Bernoulli variables, classical exclusion processes and free probability - Algebraic combinatorics and symbolic computation
Article Dans Une Revue Annales Henri Poincaré Année : 2024

Bernoulli variables, classical exclusion processes and free probability

Résumé

We present a new description of the known large deviation function of the classical symmetric simple exclusion process by exploiting its connection with the quantum symmetric simple exclusion processes and using tools from free probability. This may seem paradoxal as free probability usually deals with non commutative probability while the simple exclusion process belongs to the realm of classical probability. On the way, we give a new formula for the free energy -- alias the logarithm of the Laplace transform of the probability distribution -- of correlated Bernoulli variables in terms of the set of their cumulants with non-coinciding indices. This latter result is obtained either by developing a combinatorial approach for cumulants of products of random variables or by borrowing techniques from Feynman graphs.
Fichier principal
Vignette du fichier
2211.01710v1.pdf (704.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04245136 , version 1 (10-11-2022)
hal-04245136 , version 2 (10-10-2024)

Identifiants

Citer

Michel Bauer, Denis Bernard, Philippe Biane, Ludwig Hruza. Bernoulli variables, classical exclusion processes and free probability. Annales Henri Poincaré, 2024, 25, pp.125-172. ⟨10.1007/s00023-023-01320-2⟩. ⟨hal-04245136v2⟩
109 Consultations
7 Téléchargements

Altmetric

Partager

More