Parabolic Tamari Lattices in Linear Type B - Algebraic combinatorics and symbolic computation
Communication Dans Un Congrès Année : 2024

Parabolic Tamari Lattices in Linear Type B

Résumé

We study parabolic aligned elements associated with the type-$B$ Coxeter group and the so-called linear Coxeter element. These elements were introduced algebraically in (Mühle and Williams, 2019) for parabolic quotients of finite Coxeter groups and were characterized by a certain forcing condition on inversions. We focus on the type-$B$ case and give a combinatorial model for these elements in terms of pattern avoidance. Moreover, we describe an equivalence relation on parabolic quotients of the type-$B$ Coxeter group whose equivalence classes are indexed by the aligned elements. We prove that this equivalence relation extends to a congruence relation for the weak order. The resulting quotient lattice is the type-$B$ analogue of the parabolic Tamari lattice introduced for type $A$ in (Mühle and Williams, 2019).
Fichier principal
Vignette du fichier
12157-PDF file-48929-1-10-20240314.pdf (556.09 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04425181 , version 1 (15-05-2024)

Identifiants

Citer

Wenjie Fang, Henri Mühle, Jean-Christophe Novelli. Parabolic Tamari Lattices in Linear Type B. The 34th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2022), Jul 2022, Bangalore, India. ⟨10.37236/12157⟩. ⟨hal-04425181⟩
47 Consultations
32 Téléchargements

Altmetric

Partager

More