Broadband enhancement of mid-wave infrared absorption in a multi resonant nanocrystal-based device - Labex MATISSE Access content directly
Journal Articles Advanced Optical Materials Year : 2022

Broadband enhancement of mid-wave infrared absorption in a multi resonant nanocrystal-based device

Tung Huu Dang
Adrien Khalili
Charlie Gréboval
Huichen Zhang
Yoann Prado
Djamal Gacemi
Yanko Todorov
Carlo Sirtori

Abstract

Light management is one of the main challenges to address when designing a sensor from a nanocrystal (NC) array. Indeed, the carrier diffusion length, limited by hopping mechanism, is much shorter than the absorption depth. Several types of resonators (plasmon, Bragg mirror, guided mode, Fabry-Perot cavity) have been proposed to reduce the volume where light is absorbed. All of them are inherently narrow bands, while imaging applications focus on broadband sensing. Here, we propose an infrared sensor in the short and mid-wave infrared (SWIR and MWIR) that combines three different photonic modes to achieve broadband enhancement of the light absorption. Moreover, we show that these three modes can be obtained from a simple structure where the NC film is coupled only to a grating and a top metallic layer. The obtained device achieves a high responsivity of >700 mA.W-1 , a detectivity up to 2x10 10 Jones at 80 K, and a short response time of 11 µs.
Fichier principal
Vignette du fichier
Advanced Optical Materials - 2022 - Dang - Broadband Enhancement of Mid‐Wave Infrared Absorption in a Multi‐Resonant.pdf (1.55 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03621179 , version 1 (28-03-2022)
hal-03621179 , version 2 (22-05-2023)

Identifiers

Cite

Tung Huu Dang, Claire Abadie, Adrien Khalili, Charlie Gréboval, Huichen Zhang, et al.. Broadband enhancement of mid-wave infrared absorption in a multi resonant nanocrystal-based device. Advanced Optical Materials, 2022, 10 (9), pp.2200297. ⟨10.1002/adom.202200297⟩. ⟨hal-03621179v2⟩
164 View
45 Download

Altmetric

Share

Gmail Facebook X LinkedIn More