Communication Dans Un Congrès Année : 2023

DEMSA: a DT-enabled middleware for self-adaptive smart spaces

Résumé

Heating, Ventilation, and Air Conditioning (HVAC) systems account for a significant portion of energy consumption within buildings. In order to balance the effect of thermal comfort vis-a-vis energy savings, HVAC control strategies have been proposed. However, the strategies are static and do not take into account dynamic changes of consumers, hence creating sub-optimal outcomes. This paper proposes DEMSA, a Digital Twin (DT)-enabled middleware for the self-adaptation of smart buildings. The DEMSA middleware interconnects and coordinates intelligent data exchange be- tween the building edge server, digital twin and Artificial Intelligence (AI) planning nodes in order to invoke appropriate strategies. Moreover, DEMSA is paired with a self-adaptive mechanism that can detect the anomaly of generated planning and adaptively modify it. This process ensures balancing building energy consumption and thermal comfort requirements, without human intervention. The DEMSA middleware is described over a real smart space scenario.
Fichier principal
Vignette du fichier
Midd4DT2023_DEMSA.pdf (1.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04514015 , version 1 (20-03-2024)

Identifiants

Citer

Jun Ma, Georgios Bouloukakis, Ajay Kattepur, Roberto Yus, Denis Conan. DEMSA: a DT-enabled middleware for self-adaptive smart spaces. 1st International Workshop on Middleware for Digital Twin (Midd4DT '23), ACM/IFIP, Dec 2023, Bologna, Italy. pp.1-6, ⟨10.1145/3631319.3632303⟩. ⟨hal-04514015⟩
121 Consultations
82 Téléchargements

Altmetric

Partager

More