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ABSTRACT13

Mid-latitude circulation dynamics is often described in terms of weather regimes, represented by atmospheric field configurations
extracted using pattern recognition techniques. Each pattern is given by a given combination of distinct elements, corresponding
to synoptic objects (cyclones and anticyclones). Such intrication makes it arduous to detect or quantify shifts in atmospheric
circulation - possibly due to anthropogenic forcings - impacting recurrence and intensity of climate extremes. Here we apply
Latent Dirichlet Allocation (LDA), typically used for topic modeling in linguistic studies, to build a weather dictionary: in analogy
with linguistics, we define daily maps of a gridded target observable as documents, and the grid-points composing the map as
words. LDA provides a representation of documents in terms of a combination of spatial patterns named motifs, which are
latent patterns inferred from the set of snapshots. For atmospheric data, we find that motifs correspond to pure synoptic objects
(cyclones and anticyclones), that can be seen as building blocks of weather regimes. We show that LDA weights provide a
natural way to characterize the impact of climate change on the recurrence of regimes associated with extreme events.

14

Introduction15

Describing mid-latitude atmospheric circulation is challenging because of the turbulent1 and chaotic2 nature of the underlying16

flow, driven by the jet stream3. The phase space of general turbulent geophysical flows is usually thought to be very large, with17

its dimension scaling as the Reynolds number4. However, previous work based on dimensionality reduction methods5 have18

shown that the mid-latitude dynamics can, in fact, be understood through a limited number of degrees of freedom, such as19

superpositions of cyclonic and anticyclonic structures in observable fields, like sea-level pressure or geopotential height6–8.20

Indeed, while cyclones and anticyclones normally progress West to East transported by the jet, they can sometimes organize21

in persistent or intense structures9. These structures yield to extreme events such as cold spells, heat waves or extratropical22

storms, whose frequency can be modified by anthropogenic forcing10. At first, the characterization of these patterns was based23

on atmospheric indices built upon physical arguments. For example, the North Atlantic Oscillation11 or the Arctic Oscillation24

have been devised with the goal of separating blockings from the zonal flow. Later, unsupervised pattern recognition based on25

classification or dimensionality reduction methods, such as k-means12, empirical orthogonal functions13 or proper orthogonal26

decomposition14, have allowed the detection of patterns (weather regimes15) in arbitrary situations. Such patterns can be used27

to separate modes of natural weather variability from extreme events and, sometimes with open debates, detect the effects of28

climate change16, 17. However, those methods provide a field description of patterns, made of a given combination of distinct29

elements, corresponding to synoptic objects (cyclones and anticyclones) : e.g. the NAO+ pattern includes both the Azores30

anticyclone and the Icelandic low pressure system. In a changing climate, shifts in these patterns are difficult to detect or31

analyse, as it is difficult to disentangle changes due to shifts in the synoptic objects properties, or shifts in their relative weights.32

Similarly, a description based on entire fields fails to identify the genesis and dynamical properties of extreme weather events,33

as the latter are often associated with specific cyclonic or anticyclonic structures. In addition, we point out that each field can34

only belong to a single cluster with the k-means method.35

In this manuscript, we offer a change of perspective on atmospheric pattern recognition by adapting a machine learning36

technique used in linguistics to geophysical flows. Recently, several efforts have been made to apply machine learning to the37



prediction of geophysical data18, to learn parameterizations of subgrid processes in climate models19–27, to the forecasting28–31
38

and nowcasting (i.e. extremely short-term forecasting) of weather variables32–34, and to quantify the uncertainty of deterministic39

weather prediction35. We specifically use a soft clustering technique called Latent Dirichlet Allocation (LDA), a generative40

probabilistic model usually applied to collections of discrete data36. In particular, LDA is widely used to describe corpora of41

text documents: each document is assumed to be a mixture of a small number of topics which are characterized by a distribution42

over words of a finite vocabulary. Here, we apply LDA to a set of daily sea-level pressure anomaly maps over North-Atlantic43

from 1948 to 2018, considering grid-points as the equivalent of words and looking for a classification of the pressure anomaly44

maps in terms of distinct patterns equivalent to the topics, as presented in Fig. 1. We show that LDA is capable to write45

any sea-level pressure map (documents) from the dataset (corpus) in terms of well-known cyclonic or anticyclonic structures46

(motifs, which are here the equivalent of topics). We choose here to think in terms of motifs instead of topics as these latent47

variables correspond to spatial patterns in our case. First, we show that building a weather dictionary requires a number of48

motifs compatible with the estimate of the number of active degrees of freedom of the gridded fields; this quantity should be49

ideally known prior to the application of LDA, and thus estimated with different techniques. Then, we show the usefulness of50

this mid-latitude weather dictionary to detect trends in occurrence of certain motifs caused by anthropogenic forcing and to find51

common precursors of different class of climate extremes, an important element to assess their predictability.52

Figure 1. Diagram showing the analogy between the application of LDA to text documents and to a gridded
observable map – here sea level pressure anomaly data. The equivalent of words in the latter case are the grid-points of the
map and the value of the observable on the grid-points corresponds to the number of occurrences of the words. LDA identifies
latent motifs – or topics in the case of text documents – in a corpus of documents that are defined by a distribution over the
words of a finite vocabulary (see Methods for a detailed explanation), and then interpreted as meaningful patterns (e.g.
“Colors”, “Fruits” and “Seasons” for the text documents or “Mediterranean Anticyclone”, “Azores Anticyclone” and “Icelandic
low” for sea level pressure maps). Each word of the vocabulary, or equivalently each grid-point, can be associated with
different motifs as represented by the word “orange” that can be seen as a fruit or a color.

Results53

When applying LDA, one first needs to select the number of motifs that will be necessary to describe the whole dataset. Other54

pattern recognition methods allow to chose the optimal number of components, if this is not know a priori: for example, the55

scree plot defined by deviance within groups for k-means, or the proportion of explained variance for PCA. For LDA, we56

propose two measures : the relative area covered by the motifs and the motifs average area (see eqs. (6) and (7) in Methods).57
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We observe that these two metrics converge with an increasing number of motifs (see Fig.S1 and S2). Moreover, the length58

scale computed from the average area corresponds to the typical diameter of cyclones and anticyclones. This preliminary59

inspection suggests that taking 28 motifs is sufficient to get relevant patterns which are representative of the dynamics of60

mid-latitude circulation. This value is in very good agreement with the upper bound of the number of degrees of freedom61

obtained computing the local attractor dimensions for the same dataset37. This suggests that each motif corresponds to an62

active degree of freedom in the maps, reinforcing the claim that cyclones and anticyclones are the building blocks of the63

dynamics of mid-latitude flows. This may also indicate that LDA could be a method more suitable than others to define the64

modes of variability associated with the number of active degrees of freedom estimated by the local dimension. The latter can65

indeed provide a suggestion for optimal dimensionality reduction, but does not provide a method to project the dataset on the66

reduced dimension. The 28 motifs obtained by training the LDA model on the daily sea-level pressure anomaly maps over67

North-Atlantic from 1948 to 2018 are presented in Fig.2 (see Methods for more details). First, we observe that they consist of68

localized anomaly patterns which are mostly exclusively positive or negative, with a radius between 1000 and 2000 km i.e. they69

truly correspond to cyclonic or anticyclonic anomalies. Furthermore, they reproduce the typical locations of pressure structures70

previously named by meteorologists studying North Atlantic circulation, e.g. the Genoa low (motif 8), the Icelandic low (motif71

18), the Siberian high (motif 3) or the Azores anticyclone (motif 7). This strengthens our confidence that the motifs are not only72

a practical way to represent a complex map, but also that they correspond to actual coherent sea level pressure patterns.73

motif n°1 motif n°2 motif n°3 motif n°4 motif n°5 motif n°6

motif n°7 motif n°8 motif n°9 motif n°10 motif n°11 motif n°12

motif n°13 motif n°14 motif n°15 motif n°16 motif n°17 motif n°18

motif n°19 motif n°20 motif n°21 motif n°22 motif n°23 motif n°24

motif n°25 motif n°26 motif n°27 motif n°28

0.02 0.01 0.00 0.01 0.02
weight

Figure 2. The 28 motifs identified by LDA by using as documents the daily sea-level pressure anomaly maps over
North-Atlantic from 1948 to 2018. Positive anomalies and negative anomalies are respectively represented in red and blue.
LDA outputs normalized topics, so the color intensity only represents a relative weight.

Internal variability and climate change74

As each daily anomaly is represented by a mixture of motifs with given weights, we can study the evolution over years of75

the weight for each motif. The average values of the motifs weights for yearly intervals are presented in Fig.3. Most of the76

motifs show oscillations of weights of the order of few percents with signs alternating with interdecadal frequency, coherently77

with the claim that chaotic behaviour of mid-latitude circulation at climate scales dominate. On the contrary, motifs 5, 8, 1278

and 19 stand out with a visible coherent evolution over time. They correspond to pressure structures over Mediterranean sea.79

Anticyclonic anomalies associated with motifs 5 and 12 have been already linked to heatwaves on the Mediterranean basin38, 39.80

During the analysed period, there is an increase of high pressure patterns average weights and a corresponding decrease of low81

pressure ones. The augmented weight of motifs 5 and 10 could be explained via the strengthening of subtropical anticyclones82
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to higher latitudes and a corresponding weakening low pressure systems (motifs 8 and 19). This phenomenon, investigated in40
83

at the global scale, has received little attention for the Mediterranean basin, although few signals are coherent with our findings,84

namely the fact that this area will be warmer and dryer41, and that heatwaves are projected to increase42, 43.85
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Figure 3. Evolution of mean motifs weights over the years. Each column corresponds to a time slot of one year from 1948
to 2018 and each row corresponds to a motif. The color represents the difference of the average weight of the time slot and the
average weight over the whole interval. It is red if the weight is higher than the overall average and blue instead. We notice that
at least four motifs differentiate themselves by a coherent evolution over time (motifs 5, 8, 12 and 19). They correspond to
structures on Mediterranean sea, with an increase of high pressure patterns average weights and a decrease of low pressure ones.

Extreme events86

We also investigate the distribution on motifs for particular events such as heat waves, cold waves and extra-tropical storms87

which are associated with large scale pressure anomaly patterns. We use the EM-DAT44 database to identify these events and88

analyse their average properties in the motifs representation. This analysis has two main goals: first identify the relevant motifs89

for each class of extreme events and then verify whether some of the motifs are precursors of those extreme events. Note that90

the extreme events identified by EM-DAT are defined on the basis of their impacts and not by applying extreme value theory or91

statistical analysis of atmospheric variables. It is therefore interesting to see whether such extremes are associated to specific92

motifs45. Fig.4, S12 and S13 each show the average anomaly map (e) and motifs weights (d) along with the corresponding93

three leading motifs (a,b,c) for 5 days before the beginning of the event (1), 3 days before (2), and on the first day of the event94

as reported in the EM-DAT databases (3) for the 3 types of events mentioned before. The distributions on the motifs for the first95

day (3) highlight the fact that we can identify dominant motifs that are consistent with each type of event. Indeed, we find96

positive anomalies i.e. high pressures for heat waves and cold waves, and negative anomalies i.e. low pressure for extra-tropical97

storms, as expected. What’s more, this representation might shed light on teleconnections between different patterns46, 47. As98

an example Fig.S12 shows that heat waves on Europe tend to be associated with high pressure over Canada (motif 26). This99

teleconnection is a robust feature already identified with other techniques such as importance sampling48. We also notice that100

LDA is capable of identifying motifs that act as precursors for these events. Let us analyse in details the case of cold-spells101

(Fig.4 and S10), for which motifs 9 and 24 are precursors several days in advance. These motifs show that cold spells over102

Europe are generally associated with anticyclonic blocking conditions located to the North of continental Europe, consistently103

with previous results49. Looking at 5 days precursors of heat waves (Fig. S9 and S12), a cyclonic mid-Atlantic pattern appears.104

This is consistent with previous analysis50 showing that a wavy pattern of wave number 7 with alternating cyclonic-anticyclonic105

structures favor heatwaves over Europe51.106

Discussion107

We have discussed the application of an unsupervised pattern recognition method based on Latent Dirichlet Allocation (LDA), a108

generative probabilistic model for collections of discrete data. The method has been applied to a set of snapshots featuring daily109
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Figure 4. Mean anomaly for cold waves over Europe. The anomaly is presented for five days before the event (1), 3 days
before (2) and on the first day of the event as identified in EM-DAT (3). (a-b-c) shows the three leading motifs in the LDA
representation of the anomaly for the corresponding day. (d) shows the whole representation of the anomaly based on a weight
assigned to each motif. (e) shows the mean anomaly map the corresponding events in the EM-DAT database. The error bars
represent 2 times the standard error.

sea level pressure anomaly over North-Atlantic from 1948 to 2018. The main advantage of LDA is the representation of a map110

of a gridded observable in terms of a combination of motifs, which are latent spatial elements inferred from the set of snapshots.111

We have shown that the motifs correspond to intelligible localized patterns in contrast with other techniques12–14 like those112

leading to the definition of weather regimes15. Indeed motifs correspond to single cyclonic or anticyclonic patterns and are,113

therefore, of immediate interpretation for meteorologists and climatologists. Using motifs as a weather dictionary, we have114

been able to naturally address questions about climate change and precursors of weather extreme events which have required115

advanced analyses techniques in other studies8, 9, 39. Our illustrative analysis of the capabilities of LDA for climate science has116

shown that subtle changes in the frequency or intensity of cyclonic structures over the Mediterranean can be distinguished from117

the general interdecadal variability of the chaotic atmospheric circulation. Furthermore, we have determined that only a few118

number of motifs are relevant to describe weather extreme events such as cold spells, heat waves or extratropical storms even if119

these have been defined only on the bases of their impacts in the EM-DAT database. This suggests a partially positive answer to120

the question raised by van der Wiel45 on whether extreme events defined by their impacts can be connected to the underlying121

climate dynamics: the connection exists but with specific motifs rather than with maxima or minima of meteorological variables.122

We have also been able to identify precursors of these events through motifs and explain their origin, consistently with previous123

results49–51.124

Our study paves the way for several exciting applications of LDA in the context of present and future climates, namely i) a125

comprehensive study of precursors of extreme events, whose existence hints to a possibly unexploited predictive power of LDA126

ii) the intercomparison of climate models using as skill score their ability of representing specific motifs, e.g. those relevant for127

weather extreme events, iii) the analysis of the emergence or disappearance of motifs in different climates conditions.128

Methods129

We use daily sea level pressure data from NCEP/NCAR reanalysis52 over the period 01/01/1948 – 06/01/2018 (S = 25,574 days).130

The data is mapped on a (m = 20,n = 53) grid of resolution 2.5◦×2.5◦ representing a region from 80W to 50E and 22.5N to131
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70N which corresponds to North Atlantic and Europe. We compute the daily seasonal standards of sea level pressure based on132

these data for every day of a year and then the daily anomaly by subtracting it to the original map. We then split each anomaly133

map into a positive anomaly map and a negative one. which is equivalent to doubling the size of the grid (or grid-points). The134

anomaly map constitute a pair of 2D arrays where each element of the (m,n) array (or grid-point) is characterized by a positive135

value. In the LDA framework, each grid-point is considered to be a word of a vocabulary. As already done by Frihat53 for the136

identification of coherent structures in turbulent channel flow, the positive value of each element is assimilated as the number of137

occurrences of the word found in each document, i.e. the anomaly map, to within a potential rescaling factor and a digitization.138

Here we took a rescaling factor of 1 for the raw sea level pressure anomaly in Pa and we also put a threshold value of 100 Pa139

to consider only significant anomalies and to speed-up the training of the model by reducing the word count of documents.140

We train the LDA model with its implementation in the Gensim Python library54. The LDA model takes several parameters141

as arguments, such as the number of passes and iterations (we refer to Gensim LDA documentation for a definition of these142

parameters). These have been chosen high enough so that the perplexity36 – a quantity defined to evaluate the performance of143

the model – converges. Here we set the number of iterations as 2000, the number of passes as 20, the chunksize as 2048, alpha144

and eta as ’auto’, random state as 100 to get reproducible results and other parameters to defaults values. The number of topics145

N is also a parameter which has to be set before training.146

The program produces two arrays corresponding in the text mining applications to the document-topic distributions w (1)147

and the topic-word distributions t (2) which are normalized probability distributions. Thus, each document – here corresponding148

to a daily anomaly map (as
i, j)i, j with s ∈ [1,S] denoting the snapshot in the dataset and i ∈ [1,m] and j ∈ [1,n] indicating the149

rows and columns of the map – is associated with a combination of topics with given weights ws
l where l ∈ [1,N] indicates the150

corresponding topic. Each topic t l is defined the same way as a mixture of words of the vocabulary – i.e. grid-points of the151

positive and negative anomaly maps in our case – with given weights t l
i, j,k where k ∈ {+,−} indicates the positive or negative152

map. We can thus think of topics as a normalized distribution on a set of two maps. We then combine the positive and negative153

maps of each topic to a single map which is interpreted as a spatial anomaly pattern that we call motif, which we represent154

by an array µ (3). From the document-topic distribution and the motifs, we can reconstruct the anomaly map to within a155

rescaling factor. To be able to compare the value of the reference anomaly as and the reconstructed one âs, we also multiply the156

combination of motifs by the sum of the reference absolute anomaly values on the whole map (4).157

w = (ws
l )

s∈[1,S]
l∈[1,N]

with ∀(s, l), ws
l ∈ [0,1] and ∀s, ∑

l
ws

l = 1 (1)

t =
(

t l
i, j,k

)l∈[1,N]

i∈[1,m], j∈[1,n], k∈{+,−}
with ∀(l, i, j, k), t l

i, j,k ∈ [0,1] and ∀ l, ∑
i, j,k

t l
i, j,k = 1 (2)

µ =
(

µ
l
i, j

)l∈[1,N]

i∈[1,m], j∈[1,n]
≡
(

t l
i, j,+− t l

i, j,−

)l∈[1,N]

i∈[1,m], j∈[1,n]
(3)

âs ≡

(
∑
i, j

∣∣as
i, j
∣∣)(∑

l
ws

l µ
l

)
(4)

As we want to find an optimal number of motifs, we consider the following indicators : the relative area covered by the158

motifs (7) and the motifs average area (6). To do so, we define the area Al of a motif l by the number of elements of t l (or159

grid-points of the pair of maps) whose values are above a threshold, parametrized by a coefficient α ∈ [0,1] (5). Here we take160

α = 2/3 to get values of area close to the value one would get by counting the colored pixels on the maps of motifs in Fig.161

2. On the one hand, Figure S1 shows that rc(µ) increases and reaches about 99% at N = 28. Thus, we choose to consider162

N = 28 motifs for further analysis as taking more motifs would not improve significantly the coverage of the map by the motifs.163

Moreover, Figure S2 shows that A(µ) decreases and converges near 100 grid-points which corresponds to the typical diameter164

(2000-3000 km) of cyclones and anticyclones55. This choice is further motivated by an independent analysis on the same165

dataset with a dynamical system angle37. Indeed, this value of N is in very good agreement with the upper bound of the number166

of active degrees of freedom obtained computing the local attractor dimensions.167

Al = card
{

t l
i, j,k

∣∣∣∣ t l
i, j,k > max

i, j,k
{t l

i, j,k}−α

(
max
i, j,k
{t l

i, j,k}−min
i, j,k
{t l

i, j,k}
)}

and α ∈ [0,1] (5)
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A(µ) =
1
l ∑

l
Al (6)

rc(µ) =
Ac(µ)

2mn
=

1
2mn

card
{
(i, j,k)

∣∣∣∣∃ l ∈ [1,N], t l
i, j,k > max

i, j,k
{t l

i, j,k}−α

(
max
i, j,k
{t l

i, j,k}−min
i, j,k
{t l

i, j,k}
)}

(7)
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