
Laser Fault Injection in a 32-bit Microcontroller:
from the Flash Interface to the Execution Pipeline

Vanthanh Khuat∗‡, Jean-Luc Danger∗ and Jean-Max Dutertre†
∗LTCI, Télécom Paris, Institut polytechnique de Paris, France

Email: {khuat, jean-luc.danger}@telecom-paris.fr
†Mines Saint-Etienne, CEA, Leti, Centre CMP, F - 13541 Gardanne France

Email: dutertre@emse.fr
‡Faculty of Information Technology, Le Quy Don Technical University, Hanoi, Vietnam

Email: van-thanh.khuat@lqdtu.edu.vn

Abstract—In this paper, we report on a method for obtaining
faults using Laser Fault Injection (LFI) in a 32-bit Microcon-
troller (MCU) from the Flash interface to the execution pipeline
via the AHB bus. Different fault behaviors were obtained at
six positions along the instruction channel. Instruction(s) were
observed to be faulted with a reproducibility of 100% at each
position. By collecting the faults on all the positions together
and analyzing their behaviors, the faults were identified and
characterized. The faults on the Flash interface buffer are
different depending on the cache operation modes. When the
cache is disabled, the fault is related to a block of 32 bits, whereas
when the cache is enabled, the fault is related to a block of 64 bits.
Two fault models, namely, replay and skip of instructions block
were obtained depending on the injection position. The fault
happening at the AHB bus is with a block of two instructions in
both cache operation modes. Depending on the injection position,
two fault models of replay and skip of two instructions were also
observed. The faults on the core pipeline are related to a single
instruction. The fault behavior is such that both the fetch and
execution stages were faulted. The skip of a single instruction
was obtained by faulting either the fetch or the execution stage
of the core pipeline. By increasing the Pulse Width (PW), tens
to more than one hundred of instructions were faulted at each
position. The impacts of LFI parameters such as the PW and the
power on the faults were studied. In addition, we compared skip
fault models achieved at different positions. Our results illustrate
the spatial and temporal accuracy of the LFI, thus pointing out
the vulnerable positions and unveiling information of the device
architecture.

Index Terms—Laser fault injection, Fault models, Character-
ization, Microcontroller.

I. INTRODUCTION

Recently, with the development of the Internet of Things
(IoT), the demand for using Microcontrollers (MCU) has
witnessed a considerable rise. Data being processed by MCU
including password, account, etc. are sensitive and valuable.
Because the devices are physically accessible, in addition to
cyberattacks, many physical techniques have been developed
for extracting unauthorized data. Among these techniques,
Fault Injection (FI), an active side-channel attack, poses a
significant threat to MCUs. In this method, by introducing
a physical stress into the device, the adversaries can alter the
way it functions; hence, it produces a faulted result which is
further used in Differential Fault Analysis (fault vs no-fault)
to extract the unauthorized data.

The most common techniques used for Fault Injection
Attacks (FIA) are: Clock or Voltage tampering [1], [2], [18],
Electromagnetic Fault Injection (EMFI) [3], [11], [13], [14],
Optical Fault Injection [6], [17], [19]. The attacks can be clas-
sified into invasive, semi-invasive, and non-invasive attacks.
Clock or Voltage tampering is relatively easy to implement
with a simple and low-cost setup, however, it has a global
impact on the device under test. In contrast, EMFI and LFI
only have a local impact on a specific part of the device.
Specifically, LFI has an extremely high spatial resolution
which makes it possible to achieve a local effect on a single
element with even the most advanced technology [5].

LFI can be classified into semi-invasive techniques because
the device needs to be unpackaged to guarantee that the
light can reach the circuit layer. Optical Fault Injection is the
method in which an optical source (including the laser) is used
to induce ionization in electronic circuit devices, causing the
targets to behave differently. The disadvantages of this method
are: having a relatively high cost of equipment and requiring
well-trained staff to operate.

Since the first implementation of optical attack in [19],
there have been plenty of works focusing on examining
the characteristics of the optical attack, understanding the
mechanism underneath, and developing the countermeasures
against it. Many of them are dedicated to studying different
kinds of laser-induced faults in MCU.

LFI is reported of being able to cause faults on data stored
in volatile memories (Static Random Access Memory (SRAM)
or registers) [10], [15], [16], with the different underlying
technologies and data while moving from one to another
component without affecting the data stored in non-volatile
source memories [3], [11], [22]. Specifically, LFI can be
used to target and modify instructions, causing them to be
corrupted, skipped, etc. Recently, Dutertre et al. [6] reported a
powerful LFI-induced multiple instructions skip fault model,
in which the authors were able to skip an arbitrary number of
instructions with a maximum of 300 instructions by using a
laser pulse with a relatively long PW.

In MCU, instructions are stored in program memories and
passed through several stages or components before being
executed. Most of the available works demonstrated the ability



to induce change into instructions being loaded from mem-
ories, resulting in instructions modification or skip. In our
previous work [9], with the same target, we were able to fault
instructions at the Flash interface buffer, and achieved two
fault models namely, skip and replay of a block of instructions
using EMFI. Recently, we reported on the replay of a block
of instructions fault model caused by laser-induced prevention
of Flash interface buffer update [8].

In this paper, by using LFI, we were able to fault instructions
in several stages such as the Flash interface buffer, the AHB
data bus, the fetch and execution stages in the core pipeline.
The faults were induced at different positions of the laser
spot. To our best knowledge, no studies have been reported
of being able to fault the core pipeline and analyzed the fault
on instructions following their flow from the Flash interface
to the execution pipeline.

The main contributions of this paper are:
• being able to fault instructions from the Flash interface

to the core pipeline in a 32-bit MCU such as fault
on instructions updated into the Flash buffer, fault on
instructions loaded into the AHB bus, fault on the core
fetch and execution stages;

• identifying the faults in different stages and their behav-
iors, and characterizing the fault models at instruction
level and bit level;

• investigating the impact of LFI parameters such as the
PW and the power on the faults;

• comparing the instruction(s) skip fault models obtained
with LFI at different positions.

The rest of the paper is organized as follows. Section
II describes the experimental setup, target, test code, fault
definition, and methodology. Section III describes the faults
of instructions on different stages from the Flash interface to
the core execution pipeline. Section IV describes the impact
of the PW on the number of faulted instructions. Section V
investigates the impact of the laser power on different fault
models. Section VI characterizes the fault model at bit level.
Section VII compares multiple instructions skip fault models
obtained at different positions. Finally, section VIII provides
the main conclusions and perspectives.

II. EXPERIMENTAL SETUP AND METHODOLOGY

A. Laser bench

Fig. 1 shows the experimental setup we used for conducting
LFI on the MCU. The laser platform, as shown in Fig. 1(a),
consists of a laser source, a microscope, an XYZ stage, an
Infrared (IR) camera, and a computer. The laser source can
produce laser pulses with a wavelength of 1,064 nm which
allows the light to pass through several hundreds of µm
of silicon. The laser PW is tunable in the range from 50
ns to 1 s. In addition, the laser source allows obtaining a
programmable delay, and a power ranging from 0 to 3 W. The
light is conducted to and focused by a microscope. In our
experiments, we used the microscope with a 5× objective to
focus the laser beam on the transistors of the device under test.

Fig. 1. Experimental setup: (a) laser bench schematic, (b) target backside
image taken using an IR camera

The diameter of the laser spot was 20 µm. The device under
test was mounted on the XYZ stage which allows controlling
the position of the laser spot with an accuracy of 0.1 µm.
The IR camera was used to observe the active part of the
device and the location of the laser spot through the bulk (FIA
were carried out through the target backside). The computer
was used to control the laser pulse parameters as well as
communicate with the device under test.

B. Device under test and targeted regions

Our target was a 32-bit MCU: a SAMD21G18A [7] which
uses an ARM Cortex-M0+ core (2-stage pipeline). This core
implements an ARMv6 thumb architecture and the Thumb-
2 ISA of which most of the instructions are 16-bit length
[12]. The MCU is equipped with a 256 Kb Flash, and a 32
Kb SRAM; the data transfer between the memories and the
processor is performed via 32-bit AHB and APB buses. A
cache of 8× 64-bit lines is added to improve the performance
of the MCU.

The MCU was unpackaged from the backside to ensure
that the light can reach the transistor layer. Notice that the



laser power is strong enough to reach the circuit layer of the
MCU without requiring it to be thinned down. Fig. 1(b) shows
the image taken with an IR camera from the backside of the
MCU. The positions of the Flash and SRAM memories are
marked with black rectangular shapes. Other structures in the
circuit layer can also be seen. The positions marked with red
circular shapes are the points of interest we considered for
LFI in this work. For all the reported experiments, the MCU
was configured to work at 12 MHz with zero wait state which
guarantees that there is no delay during the data read operation
from the Flash memory. The MCU was debugged using an
Atmel-ICE Debugger which allows stopping the program at a
breakpoint and collecting registers data for further analysis.

C. Test code and fault definitions

Fig. 2. Test code and skip fault definitions: (a) test code, (b) skip i5i6i7i8,
(c) skip i5i6 (d) skip i5

The main part of our test code which consists of twelve
instructions is shown in Fig. 2(a); it consists in additions of
immediate values in registers r0 to r4. For convenience,
the instructions are denoted as (i1, i2, i3, i4, i5, i6, i7, i8,
i9, i10, i11, i12). The initial values of the related registers
are as follows: r0:0x7F8000FF, r1:0x01FE0000,
r2:0x3FC00000, r3:0x001FE000, r4:0x0007f800.
The following fault definitions are used in this paper.

Fig. 3. Test code and replay fault definitions: (a) test code, (b) replay
i1i2(i5i6), (c) replay i3i4(i5i6), (d) replay i1i2i3i4

• skip iaib...: instructions (ia, ib...) being replaced by no-
operation instructions (nop, nop,..), with a, b being 1,
2, ..., 12;

• replay iaib(icid): instructions (ic, id) being overwritten
by instructions (ia, ib), with a, b , c, d being 1, 2, ..., 12;

• replay i1i2i3i4: instructions (i5, i6, i7, i8) being over-
written by (i1, i2, i3, i4);

• replay i5i6i7i8: instructions (i9, i10, i11, i12) being
overwritten by (i5, i6, i7, i8);

• other: instruction(s) modification, system fault, and oth-
ers.

In this paper, mainly two types of fault models were observed:
(1) instruction(s) skip, (2) instructions replay. Fig. 2 shows
skip fault definitions. Notice that concerning instruction(s) skip
fault model, we assume that the instruction is replaced by an
instruction equivalent to no-operation (nop).
• Fig. 2(a) shows the test code.
• Fig. 2(b) demonstrates the skip i5i6i7i8 in which (i5, i6,
i7, i8) are turned into instructions equivalent to (nop, nop,
nop, nop).

• Fig. 2(c) demonstrates the skip i5i6 in which (i5, i6) are
turned into (nop, nop).



• Fig. 2(d) demonstrates the skip i5 in which (i5) is turned
into (nop).

Fig. 3 shows the replay fault definitions.
• Fig. 3(a) shows test code.
• Fig. 3(b) demonstrates the replay i3i4(i5i6) in which (i5,
i6) are overwritten by (i3, i4).

• Fig. 3(c) demonstrates the replay i1i2(i5i6) in which (i5,
i6) are overwritten by (i1, i2).

• Fig. 3(d) demonstrates the replay i1i2i3i4 in which (i5,
i6, i7, i8) are overwritten by (i1, i2, i3, i4).

It should be pointed out that to differentiate between the
replay and skip fault models, nop instructions should not be
used in the test code, because the replay and skip of a block of
nop instructions are equivalent. Here, for convenience of post
processing, instructions: add r0,r0,#value (with value
being 0x01,...,0x08) were used for (i1, i2, i3, i4, i9, i10,
i11, i12); and (i5, i6, i7, i8) are simply the operations to
add 0x01 to the registers r1, r2, r3 and r4 .

D. Test procedure and sensitive regions identification

Fig. 4. SAMD21 NVM interface [7]

To detect and roughly classify the induced faults, it is of
great importance to have an overview of the flow of the
instructions from the Flash memory to the core pipeline. Fig. 4
shows the block schematic of the Nonvolatile Memory (NVM)
of the SAMD21G18A. Instructions, normally stored in the
NVM such as the Flash, are loaded into the Flash interface
buffer before being transferred to the AHB bus. And according
to [20], up to 32 bits of data corresponding to 2×16-bit
instructions are loaded into the AHB bus every two clock
cycles. The instructions then go through the pipeline one after
another. Recently, it was demonstrated that the Flash interface
buffer can be faulted using EMFI [9] and LFI [8]. In these
works, we also noticed that the buffer sizes are different
depending on the cache operation mode. As the cache is
disabled, the buffer size is 32 bits corresponding to 2×16-bit
instructions. As the cache is enabled, the buffer size is 64 bits
corresponding to 4×16-bit instructions. Based on the number
of faulted instructions and the fault behavior reported when
the cache is disabled and enabled, we were able to identify at
which stages the instructions were being faulted.

Concerning the experimental process, we first performed a
scan of all the chip surface to identify its sensitive regions. For

the Flash region, the fault tends to be some specific bits on the
opcode of the instruction resulting in instruction modification
or skip as reported in [4]. In addition, six regions were found
with different fault behaviors. For each region, we focused our
experiments to the location that reported the highest fault rate
to collect data for further analysis. The positions were marked
with red circular shapes numbered from 1 to 6 as shown in
Fig. 1(b).

All registers were initialized to a known value at the
beginning of all the tests to ensure fault traceability. One
test iteration follows three main steps: (1) a target reset is
performed to initialize all the core registers; (2) the trigger
for laser pulse generator is set, and the test code is then
executed; (3) registers content harvesting is performed as
the program reaches the configured break-point, or when an
interrupt routine is performed. During the campaign, 100
tests were performed for each configuration of FI parameters.
Before each test, we collected the contents of all registers
at the configured breakpoint to confirm that the program
functions correctly in normal conditions and used the values
as the reference to detect the faults after each LFI.

III. FAULT ON INSTRUCTIONS: FROM THE FLASH
INTERFACE TO THE EXECUTION PIPELINE

A. Fault behavior

Fig. 5 shows the fault models and the fault rates achieved
through the Flash interface to the execution pipeline with six
different positions designated as P1, P2, P3, P4, P5, and P6
(see Fig. 1 for their exact locations). For each position, we
studied the injected faults in both cache disabled and enabled
modes. The laser power was set to 1.5 W, the PW was 50
ns. All the results were taken in the same time window: from
1,030 ns to 1,585 ns. For all positions, a perfect fault rate of
100% was achieved by finely tuning the laser spot location.

At P1 and P2, the faults are related to a block of two and
four instructions depending on the cache operation mode. Two
fault models, namely, replay and skip of block of instructions
were obtained. As the cache is disabled, the block is with
2×16-bit instructions or 32 bits data. As the cache is enabled,
the block is with 4×16-bit instructions corresponding to 64
bits data. The fault behavior is almost the same as the result
obtained in [9], in which the faults were ascribed to Electro-
magnetic (EM)-induced fault on the Flash interface buffer, and
the fault mechanism was discussed. In addition, the locations
of P1 and P2 are very closed to the Flash memory. Therefore,
we also ascribed the faults obtained at P1 and P2 to laser-
induced fault on the Flash interface buffer. The replay fault
is caused by laser-induced prevention of the Flash interface
buffer update, while the skip fault is caused by laser-induced
corruption of one or more bits in the buffer content.

The differences between the faults obtained with EMFI [9]
and LFI are as follows. First, in EMFI, the replay and skip fault
models were obtained by using different PW at the same probe
position. While, in LFI the two fault models were obtained at
different positions and with the same laser parameters. Second,
the faults were achieved at almost the same delay time in



Fig. 5. Laser-induced fault on MCU from the Flash interface to the execution
pipeline: replay fault on the Flash interface buffer (a) cache disabled, (b) cache
enabled, skip fault on the Flash interface buffer (c) cache disabled, (d) cache
enable, replay fault on AHB bus (e) cache disabled, (f) cache enabled, skip
fault on AHB bus, (g) cache disabled, (h) cache enabled, skip fault on the
core pipeline fetch (i) cache disabled, (j) cache enabled, skip fault on the core
pipeline execution (k) cache disabled, (l) cache enabled.

EMFI, while in LFI as shown in Fig. 5(a) to (d), the faults
are achieved with a shift in time. This is probably because
the laser has a higher local effect as compared to EM pulses.
Hence, at each position, the laser pulse only has an impact
on one subpart of the Flash interface buffer. Whereas an EM
pulse (at a given probe position) has a simultaneous effect
on several parts of the Flash interface buffer; which varies
for different settings of the PW, thus injecting different fault
types. For the faults at P3 to P6, as shown in Fig. 5(e) to
(l), there is no obvious difference between the faults achieved
with cache disabled and cache enabled. The faults at P3 and
P4 are related to a block of two instructions; it repeats every
two clock cycles. Considering the case of the cache disabled
mode at positions P2 and P4, an instructions skip fault model
is obtained in both cases with the same periodicity (two clock
cycles) but there is a reduction in the width of the sensitivity
time window for P4 w.r.t. P2. However, when considering the
case with cache enabled mode, the difference is obvious: at
P2, a block of four instructions is skipped while a block of two
instructions is skipped at P4. The faults induced at P5 and P6
are single instruction skips with one clock cycle periodicity.

P1 and P2 are close to the Flash, while P3, P4, P5 and P6
are located between the Flash and the SRAM. Because the
chip is opened from its backside, it is not possible to see the
circuits at these locations, however, P3, P4, P5 and P6 are
most likely to be close to the location of the Processor Core
(PC).

Notice that in the same target, it was not able to observe
the faults obtained at positions from P3 to P6 when using
EMFI [9]. Especially, there is no available work reporting on
being able to fault the core pipeline or the progress of the
instructions as they travel from the Flash interface to the core
pipeline. Therefore, it is of great importance to further analyze
the mechanism underneath.

B. Fault mechanism hypothesis

To understand the mechanism of the fault at the positions
from P3 to P6, it is necessary to have a close look at the
pipeline of an Arm Cortex M0+. As shown in Fig. 6 (a), in
Arm Cortex M0+, data loaded from the Flash interface go
through several steps: (1) loaded into AHB bus, (2) the core
fetch, (3) the core execution. Noted that according to [21],
Arm Cortex M0+ has a two-stage pipeline: stage 1 (fetch
and predecode) and stage 2 (main decode and execution). For
convenience, in this work, we simply used fetch for stage 1
and execution for stage 2. As an example, here, we consider
the execution of instructions (i5, i6) of our test code, from
their loading from the Flash memory to their execution, that
lasts four clock cycles from the transfer of the address of
instruction i5 (denoted as a5) to the execution of i6. First,
32-bit data corresponding to 2×16-bit instructions (i5, i6)
are loaded from the Flash interface into the AHB bus and
buffered in HRDATA of which the size is 32 bits. Then the
instructions go through the fetch and execution stages of the
core pipeline. We can see that data loading into the AHB bus
happens every two clock cycles, while the fetch and execution



Fig. 6. Hypothesis on the faults on the AHB bus and the core pipeline: (a)
normal execution process, (b) laser-induced replay of two instructions (i5i6),
(c) laser-induced modification of two instructions (i7, i8), (d) laser-induced
fault on the core fetch pipeline stage, (e) laser-induced fault on the core
pipeline execution stage

in the core pipeline happen every clock cycle simultaneously
for two successive instructions (note that we only considered
here the 16-bit instructions having the execution time of one
clock cycle).

Fig. 6 (b) and (c) show the hypothesis of faults effects
(highlighted in red) on data loaded into the AHB bus. Accord-
ing to the description in [21], data from program memories
are read into the AHB bus every two clock cycles for better
performance. First, we consider a laser pulse during clock
cycle 3 that prevents instructions (i7, i8) from being loaded
into HRDATA. As a result, because HRDATA is not updated,

instructions (i5, i6) are replayed and instructions (i7, i8) are
discarded without being executed (as if they were overwritten
by (i5, i6) ). Notice that the replay of two instructions is not
the same as the replay of two instructions observed at P1 with
cache disabled. At P3, (i5, i6) overwrites (i7, i8); while at P1
(i5, i6) overwrites (i9, i10).

In the second case, the content of HRDATA is faulted
(the update process is completed but with faulted instructions
denoted as (i′7, i′8)). During our experiments, (i′7, i′8) were not
recognized by the core, they were considered as (nop, nop)
instructions, resulting in the skip of a block of two instructions.
Notice that as the cache is disabled, the fault at P4 is quite the
same as that obtained at P2. However, as the cache is enabled,
the faults at the two positions can be differentiated by the
number of faulted instructions and the fault periodicity: (1)
for the fault on the Flash buffer, the block affected consists of
four instructions and the fault repeats every four clock cycles,
(2) for the fault on AHB bus, the block affected consists of
two instructions and the fault repeats every two clock cycles.

From Fig. 5 (a-d) and (e-h), we identified respectively: (1)
faults induced on the Flash interface buffer at positions P1
and P2, and (2) faults on data in the AHB bus at positions P3
and P4, which share a common behavior of injecting faults on
a block of 2 or 4 instructions. In both cases, the instructions
skip (which were probably the modifications of instructions
at the opcode level) and replay fault models were observed at
close locations. It was in cache enabled mode that skip and
replay of block of four instructions were obtained at positions
P1 and P2.

Fig. 6 (d) and (e) show the hypothesis of the effects of
faults induced on the core pipeline fetch and execution stages
for a laser shot at clock cycle 3. As mentioned above, the ARM
Cortex-M0+ core pipeline consists of two stages, namely, fetch
and execution. At position P5, the core fetch stage is faulted:
as a result instruction i6 is turned into a faulted instruction
i′6 which executes as a (nop). While at position P6, the core
execution stage is faulted: as a result instruction i5 is turned
into a faulted instruction i′5 which executes as a (nop). This
behavior illustrates the progression of instructions into the
pipeline stages and the ability to fault different consecutive
instructions depending on the laser beam location (targeting
the fetch or execution stages) for the same injection time. At
positions P5 and P6, the laser PW made it possible to skip a
single instruction with a fault rate of 100%.

Notice that there is no paper reporting of being able to fault
both the stages pipeline of the MCU.

Through the above analysis, the following conclusions are
reached:
• Position P1: the replay of a block of instructions due

to laser-induced prevention of the Flash interface buffer
updating process;

• Position P2: the modification of a block instructions
(including skip) due to laser-induced bit corruption of
instruction’s opcodes in the Flash interface buffer;

• Position P3: the replay of two instructions due to laser-
induced prevention of loading data into the AHB bus;



• Position P4: the modification of two instructions (in-
cluding skip) due to laser-induced bit(s) corruption of
instructions loaded into the AHB bus;

• Position P5: the modification of a single instruction
(including skip) due to laser-induced fault in the core
pipeline fetch stage;

• Position P6: the modification of a single instruction
(including skip) due to laser-induced fault in the core
pipeline execution stage.

It is also worth mentioning that in cache enabled mode (as
we consider the cache should be used for better performance),
the number of faulted instructions and the fault periodicity,
as fault injection locations progress from the Flash interface
to the core pipeline, are: four instructions every four clock
cycles (Flash interface buffer), two instructions every two
clock cycles (data on AHB bus ), and one instruction every
clock cycle (core pipeline: fetch or execution stage).

Notice that the fault behaviors described previously were
obtained with cache miss. Further investigations showed that
in case of cache hit, the faults at P1 and P2 were not observed,
while the faults induced at P3 to P6 were the same. This makes
sense because in case of a cache hit there is no instruction
loaded from the Flash memory, instructions are instead loaded
into the AHB bus directly from the cache memory. Hence,
targeting the Flash interface buffer does not effect the executed
instructions.

C. Proposed core architecture

Based on the faulty behavior obtained from LFI used as
a reverse engineering tool, we drew in Fig. 7(a) schematic
of the targeted core architecture. When the cache is disabled,
instructions are loaded from the Flash into the Flash interface
buffer which consists of two 32-bit (corresponding to 2×16-bit
instructions) buffers as shown in Fig. 7(a); the two buffers are
updated with new data every four clock cycles with a phase
shift of two clock cycles. Then, the instructions from the Flash
buffer are loaded into the AHB bus two by two every two clock
cycles. Finally, the instructions enter the core pipeline, which
consists of two stages: fetch and execution, one after another
every clock cycle. In this case, instructions can be faulted at
positions from P1 to P6.

When the cache is enabled and cache miss occurs (meaning
that the instructions to be executed are not found in the cache
memory), the scenario is almost the same with the cache
disabled mode. The only difference is that there exists only one
64-bit buffer at the Flash interface (corresponding to 4×16-
bit instructions), and it is updated with new data every four
clock cycles. Fig. 7 (b) depicts the flow of instructions when
cache miss happens. In this case, instructions can be faulted
at positions ranging from P1 to P6.

When the cache is enabled and cache hit occurs (meaning
that instructions are found in the cache), 32-bit data corre-
sponding to 2×16-bit instructions are loaded into AHB bus
directly from the cache and enter the core pipeline. In this
case, instructions can be faulted at positions from P3 to P6,
and no fault occurs at P1 and P2.

To summarize, thanks to the local effect of the laser
pulse when interacting with the MCU, we were able to fault
instructions in a 32-bit MCU at different stages from the
Flash interface through the execution pipeline and found six
positions with different fault behaviors. The faults also reveal
helpful information to understand the architecture of the MCU.

In the following sections, the impact of the laser parameters
such as its PW and power on the faults are studied.

IV. IMPACT OF THE PW

In this section, we studied the impact of the PW on the faults
induced at positions from P1 to P6. The MCU was configured
to run in cache enabled mode. For each position, by increasing
progressively the PW, we were able to increase the number of
faulted instructions. Fig. 8 shows how the number of faulted
instructions increases with the increase in the PW. For the
fault on the Flash interface buffer at P1 and P2, with each
load of instructions block into the buffer being covered by
the laser pulse, the number of faulted instructions increases
by four. Fig. 8(a) illustrates the case in which the laser pulse
has a PW long enough to cover the loads of (i1, i2, i3, i4),
and (i5, i6, i7, i8), resulting in the fault of eight successive
instructions.

For the faults on the AHB bus at positions P3 and P4, with
each load of instructions from the Flash interface buffer to
the AHB bus being covered by the laser pulse, the number of
faulted instructions increases by two. Fig. 8(b) illustrates the
case in which a laser pulse with a PW long enough to cover
the loads of (i1, i2), (i3, i4), and (i5, i6), resulting in the fault
of six successive instructions.

For the faults on the core pipeline at position P5 and P6,
with each fetch (or execution) of the pipeline being cover by
the pulse, the number of faulted instructions increases by one.
Fig. 8(c) illustrates the case in which a laser pulse with a PW
long enough to cover the fetch (execution) of (i1), (i2), (i3),
(i4), (i5), resulting in the fault of five successive instructions.

It can be seen that the increment of the number of faulted
instructions is different depending on the laser shot position
(or the part being faulted). With a same PW, the number of
faulted instructions is different for each position.

For each position, we gradually increased the PW until the
MCU stopped working to acknowledge the limitation of the
number of successive faulted instructions. It is reported in
Fig. 9. The experiments confirmed that it is possible to extend
the number of faulted instructions by using a longer PW.

Fig. 9(a) shows the results obtained when faulting the Flash
interface buffer at P1 and P2. At P1, up to five blocks of
four instructions were overwritten by the replayed instructions
corresponding to 20 instructions not being loaded into the
Flash interface buffer. At P2, skips of up to 20 instructions in a
row were achieved. For the Flash interface buffer, we noticed
that the MCU stopped working as the number of faulted
instructions reached 20. Fig. 9(b) reports the results obtained
when faulting the AHB bus at positions P3 and P4. At P3, up to
55 blocks of two instructions were overwritten corresponding
to 110 instructions not being loaded into the AHB bus (i.e.



Fig. 7. Hypothesis on the core architecture based on fault behavior: (a) cache disabled, (b) cache enabled: cache miss, (c) cache enabled: cache hit

being overwritten by the same set of two instructions preceding
the faulted ones). At P4, we also tested until 110 instructions
were skipped in a row. After that the MCU stopped working.

Finally, Fig. 9(c) depicts the results obtained when faulting
the core pipeline at positions P5 and P6. For both P5 and P6,
we tested until 115 instructions were faulted in a row. After
that the MCU stopped working.

Our experiments assess that in all the cases a large number
of instructions can be faulted in a row. However for each posi-
tion, there is a limitation on the number of faulted instructions,
which is different for each position. This is probably because
of the side effect of longer pulse and its different impact at
each position. For one thing, longer pulse causing the MCU
to stop working is maybe due to the side effects of the pulse,
such as thermal effect. For the other thing, the difference in
the maximum number of faulted instructions is maybe because
the pulse side effect on each position is different. However, a
great deal of effort in the future is still required to achieve a
clear explanation for these differences.

It is worth mentioning that the change in the PW of the
laser pulse has no impact on the fault model achieved at each
position. This is different from the results achieved with EMFI
in [9], in which different fault models were obtained as the
EM pulses with different PW were used with a same probe
position. In addition, as the PW was increased, a smaller laser
power was needed to achieve a fault rate of 100%.

To sum up, the PW has a direct impact on the number
of faulted instructions. Tens to more than a hundred of
instructions can be faulted in a row by choosing a proper
PW. This makes the corresponding fault models even more
threatening.

V. IMPACT OF THE POWER

We also studied the impact of the laser power on the injected
faults. The PW was set to 50 ns, the laser power was first set
to 0.3 W, and then increased to 0.5 W, 0.7 W, 0.9 W, 1.1 W, 1.3
W, 1.5 W and 1.7 W. The MCU was configured to work in cache
enabled mode. For each position, we measured the maximum
fault rate obtained with each laser power. It is reported in
Fig. 10 for the laser positions we studied. It can be seen that as
the laser power increases, the fault rates increase accordingly.
With a laser power of 0.3 W, no fault is observed. The laser
power needed to induce faults on the Flash interface buffer is
relatively smaller than at the AHB bus or the core pipeline.
Starting from a laser power of 0.5 W, faults on the Flash buffer
are observed. The replay fault rate at P1 is 60%, while the skip
fault rate at P2 is about 10%. With the laser power set at 0.7
W, there is still no fault at P3 to P6, while the replay fault rate
at P1 is 80%, and the skip fault rate at P2 is 30%. With the
laser power set at 0.9 W, the fault rates at P1 and P2 can reach
100% and 90% respectively. Also, starting from a laser power
of 0.9 W, faults at P3 to P6 start to appear with the following



Fig. 8. Fault scenarios at different positions with a long pulse , (a) the Flash
interface buffer: P1 and P2, (b) the AHB bus: P3 and P4, (c) the core pipeline:
P5 and P6.

Fig. 9. Impact of the PW on the number of faulted instructions at different
positions, (a) P1 and P2, (b) P3 and P4, (c) P5 and P6.

Fig. 10. Impact of the laser power on the fault rate

fault rates: replay of two instructions (P3) 30%, skip of two
instructions (P4) 20%, skip of a single instruction (P5) 10%,
skip of a single instruction (P6) 15%. With the laser power
set at 1.1 W and higher, the fault rates mostly reach 100% at
all the positions. It is also worth mentioning that as the laser
power increases, the fault windows widen accordingly.

In short, the laser power has a direct impact on the fault rate
obtained at each position. The Flash interface buffer seems to
be more sensitive to the laser pulse than the AHB bus or the
core pipeline. Smaller laser power is needed to induce fault
on it as compared to the AHB bus or the core pipeline. With
a proper laser power, fault rate of 100% can be achieved with
all six positions. Whereas the change in the laser power has
no effect on the number of faulted instructions.

VI. FAULT AT BIT LEVEL CHARACTERIZATION

As mentioned previously, skip of instructions obtained at
positions P2 and P4 were ascribed to laser-induced corruption
of one or more bits of the instructions opcode while being
loaded into either the Flash interface buffer or the AHB
bus. To identify the fault model at bit level, specific test
codes were used to identify whether the induced faults were
bit-set, bit-reset, or both. First, to detect bit-set faults, the
buffer was filled with all bits at 0. This was done by using
a test code consisting of successive iterations of the same
instruction lsl r0,r0,#0x00, of which the opcode is
0x0000. Similarly, bit-reset faults can be detected by filling
the buffer with all bits at 1. Because there is no instruction
with such an opcode, the test code consisted of several
times the same instruction sub r7,r7,#0xff of which the
opcode is 0x3fff or most of the bits are 1.

The laser power was set to 1.5 W, and the PW to 50 ns. The
MCU was configured to work in cache enable mode, meaning
that the Flash interface buffer size is 64-bits and the HRDATA



Fig. 11. Bit level characterization: Flash interface buffer (a) bit-reset fault
rate, (b) bit-set fault rate, data loaded into AHB bus (c) bit-reset fault rate,
(d) bit-set fault rate.

size is 32-bit. Fig. 11 reports the fault rates obtained for these
two data buffers. In Fig. 11(b) and (d) corresponding to a test
code with its instructions with their bits at 0 , almost no faults
were induced. While in Fig. 11(a) and (c) corresponding to
the test code with its instructions with most of their bits are 1,
many faults were observed (with a success rate of 100% for
some timings. Through this test, we assume that at bit level,
the LFI-induced faults are bit-reset rather than bit-set. This
result is quite the same with the result obtained with EMFI in
[9].

VII. COMPARISON OF DIFFERENT SKIP INSTRUCTION
FAULT MODELS OBTAINED WITH LFI

Skip of instruction(s) is a very powerful fault model. It has
drawn great attention of the adversaries because it is easy to
use for further exploitation. As presented above, it is possible
to achieve the skip fault models by faulting instructions at
different stages from the Flash interface to the execution
pipeline: (1) the Flash interface buffer at P2, (2) the data
loaded into the AHB bus at P4, (3) the core pipeline fetch
at P5, (4) the core pipeline execution at P6. However, there
are some differences among these faults. In this section, we
draw an in-depth analysis of the skip fault models obtained in
this work.

The test code used is the same as shown in Fig. 2(a)
except that (i5, i6, i7, i8) are replaced by load instruc-
tions: ldr rx, \#address. Notice that the instruction
ldr rx, \#address has a execution time of two clock
cycles. The MCU was configured to work in cache enabled
mode. At positions P2, P4, P5 and P6, we were able to skip all
four ldr instructions (the skips were confirmed by checking
the register values) with a fault rate of 100%. Fig. 12 shows the

signals taken from the oscilloscope, where the green waveform
is an image of the laser pulse, the dark pink waveform provides
the test code time window (i.e. its duration) which includes the
four instructions, the brown waveform is the trigger signal used
to synchronize the laser shot, and the dark green waveform is
the pulse command. Notice that the MCU was configured to
operate at 12 MHz, meaning one clock cycle is approximately
83.2 ns. The black vertical bars in Fig. 12(b), (c), (d), (e)
represent the expected falling edge of the test code window in
normal execution conditions.

Note that we used different laser PW during the reported
experiments. Faulting the Flash interface buffer was accom-
plished with a PW of 50 ns which was enough to fault a
block of four instructions. While a longer pulse was needed
to fault the AHB bus or the core pipeline.

Fig. 12(b) corresponds to the skip of four instructions
obtained from a short laser pulse (50 ns PW) targeting the
Flash buffer (P2): the test code execution time is accord-
ingly reduced by four clock cycles (4 ×83.2 ns) as four
ldr rx, \#address instructions are replaced by four
nop instructions (of which the execution time is one clock
cycle). A longer laser pulse is used to skip the four load
instructions in a row while targeting the AHB bus (location
P4) as reported in Fig. 12(c). Similarly, the test code duration
decreased by four clock cycles.

The same 500 ns laser PW was used to target the core
fetch and execution stages (locations P5 and P6 respectively)
with the intent to fault four instructions in a row. In both
cases, the readback of the registers content showed that the
load instructions were not executed, as if these instructions
were effectively skipped. But as revealed in Fig. 12(d) and
(e), the test code time window was slightly increased by one
clock cycle when targeting the fetch stage and unmodified
when targeting the execution stage. The load instructions were
faulted and replaced by other (unknown) instructions having
the execution time of two clock cycles (and possibly an
instruction having the execution time of three clock cycles
with the fault on the core fetch stage). This illustrates that the
instruction skip fault model does not necessarily involve the
replacement of the skipped instructions by nop instructions.

It is also worth mentioning that as compared to faults
injected at other locations, the faults induced in the pipeline
stages are more precise and flexible. Indeed, faults induced in
the Flash interface buffer or in the AHB bus buffer encompass
a block of at least several instructions (starting at two). Hence,
faulting a single instruction is not achievable which reduces
the ability of an attacker to tailor precise attacks. While faults
induced in the pipeline allow to fault a single instruction (or
a larger number with an elementary increment of one) as
instructions are processed one by one in the pipeline stages.

VIII. CONCLUSION & PERSPECTIVES

In conclusions, by using LFI, we were able to fault the
instructions executed by a 32-bit MCU as they traveled from
the Flash interface to the execution pipeline. Instructions were
found to be faulted at: (1) the Flash interface buffer, (2) data



Fig. 12. Comparison of multiple skip fault models obtained at different positions with images taken from oscilloscope, black vertical bar indicates the expected
terminating time of test code window, one clock cycle is approximately 83.2 ns: (a) No fault, (b) fault on the Flash interface buffer at P2, (c) fault on data
loaded in to the AHB bus at P4, (d) fault on the core pipeline fetch at P5, (e) fault on the core pipeline execution at P6.

loaded into the AHB bus, (3) the core pipeline fetch and
execution stages. Six positions with different fault behaviors
were obtained.

For the Flash interface buffer, replay and skip of instructions
block fault models with a fault rate of 100% were obtained at
positions P1 and P2, respectively. The block size is related to
the buffer size which depends on the cache operation mode.
As the cache is disabled, the two 32-bit buffers of the Flash
interface are updated independently every four clock cycles
with a phase shift of two clock cycles. Hence, these operations
can be faulted independently (from one to several blocks
of two instructions are faulted depending on the laser PW).
Whereas in cache enabled mode, the 64 bits of the Flash
interface buffer are updated simultaneously every four clock
cycles. Block of four instructions can be faulted.

Instructions are loaded into the AHB bus buffer by blocks
of 2×16-bit instructions (either in cache enabled or disabled
mode). Two fault models of replay and skip of two instructions
with a fault rate of 100% were obtained at the corresponding
positions P3 and P4, respectively. The replay of instructions
block at P1 and P3 is ascribed to laser-induced prevention
of block data update, resulting in the replay of the previously
stored block of data. While the skip of instructions block at P2
and P4 is due to laser-induced bit corruption (bit-reset) in the
block data being updated. The fault on core pipeline happens
with each single instruction. For the same instruction, there is a
shift of one clock cycle in injection time of the faults between
the fetch and the execution processes. Single instruction skip
with a fault rate of 100% was achieved by faulting either the
fetch or the execution.



The impact of laser parameters such as the PW and laser
power on the induced faults were systematically studied.
For all six positions, we were able to achieve from tens to
more than one hundred of faulted successive instructions by
increasing the PW. The laser power has a direct impact on the
fault rate of the LFI-induced faults. The fault only occurs when
the laser power reaches a certain value. The Flash interface
buffer seems to be more sensitive to the laser pulse as the
fault on it occurs with smaller powers. As the laser power
increases, the fault rates increase accordingly.

We further used specific test codes with the opcodes having
maximum bits of 1 and 0 to characterize the fault at the Flash
interface buffer and the data loaded into the AHB bus at bit
level. The fault model was identified to be bit-reset rather than
bit-set.

In addition, we compared the skip fault models obtained at
different position to each other by monitoring the width of
the related signals. The skip obtained by faulting the Flash
interface buffer and AHB bus data involves the replacement
of instructions by nop operations, while the skip obtained by
faulting the fetch and execution stages in the core pipeline
involves the replacement of instructions by other (unknown)
operations.

Our future work will be centering on the validation of the
faults obtained in this work on other devices.

ACKNOWLEDGMENT

This work was partly funded by the SPARTA project, which
has received funding from the European Union Horizon 2020
research and innovation programme under grant agreement
number 830892.

REFERENCES

[1] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-
depth and black-box characterization of the effects of clock glitches on
8-bit mcus. In 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 105–114. IEEE, 2011.

[2] Alessandro Barenghi, Guido Bertoni, Emanuele Parrinello, and Gerardo
Pelosi. Low voltage fault attacks on the rsa cryptosystem. In 2009
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 23–31. IEEE, 2009.

[3] Arthur Beckers, Josep Balasch, Benedikt Gierlichs, Ingrid Verbauwhede,
Saki Osuka, Masahiro Kinugawa, Daisuke Fujimoto, and Yuichi
Hayashi. Characterization of em faults on atmega328p. In International
Symposium on Electromagnetic Compatibility. IEEE, 2019.

[4] Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain
Moëllic, Jean-Baptiste Rigaud, and Jean-Luc Danger. Laser-induced
single-bit faults in flash memory: Instructions corruption on a 32-bit
microcontroller. IACR Cryptology ePrint Archive, 2018:1042, 2018.

[5] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan
De Castro, Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gen-
drier, David Hély, Regis Leveugle, Paolo Maistri, et al. Laser fault
injection at the cmos 28 nm technology node: an analysis of the
fault model. In 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 1–6. IEEE, 2018.

[6] Jean-Max Dutertre, Timothé Riom, Olivier Potin, and Jean-Baptiste
Rigaud. Experimental analysis of the laser-induced instruction skip fault
model. In Nordic Conference on Secure IT Systems, pages 221–237.
Springer, 2019.

[7] Microchip Technology Inc. SAM D21/DA1 Family. In SAM D21/DA1
Family.

[8] Vanthanh Khuat, Jean-Max Dutertre, and Jean-Luc Danger. Analysis of a
laser-induced instructions replay fault model in a 32-bit microcontroller.
In 2021 Euromicro DSD/SEAA 2021 Conference (acceptted), 2021.

[9] Vanthanh Khuat, Oualid Trabelsi, Laurent Sauvage, and Jean-Luc Dan-
ger. Multiple and reproducible fault models on micro-controller using
electromagnetic fault injection. In 2021 Joint IEEE Internationnal
Symposium on Electromagnetic Compatibility, Signal Power Intergrity,
and EMC Europe (acceptted), 2021.

[10] Marc Lacruche, Nicolas Borrel, Clement Champeix, Cyril Roscian,
Alexandre Sarafianos, Jean-Baptiste Rigaud, Jean-Max Dutertre, and
Edith Kussener. Laser fault injection into sram cells: Picosecond versus
nanosecond pulses. In 2015 IEEE 21st International On-Line Testing
Symposium (IOLTS), pages 13–18. IEEE, 2015.

[11] Ronan Lashermes, Marie Paindavoine, Nadia El Mrabet, Jacques JA
Fournier, and Louis Goubin. Practical validation of several fault attacks
against the miller algorithm. In 2014 Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 115–122. IEEE, 2014.

[12] ARM Limited. Arm®v6-m architecture reference manual. In ARM
Limited. ARM Limited, 2017.

[13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson,
and Emmanuelle Encrenaz. Electromagnetic fault injection: towards a
fault model on a 32-bit microcontroller. In 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 77–88. IEEE, 2013.

[14] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien
Bringer, and Laurent Sauvage. High precision fault injections on the
instruction cache of armv7-m architectures. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
62–67. IEEE, 2015.

[15] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.
Fault model analysis of laser-induced faults in sram memory cells. In
2013 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 89–98. IEEE, 2013.

[16] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-attacks
on crt-based rsa: Concrete results. na, 2007.

[17] Jörn-Marc Schmidt, Michael Hutter, and Thomas Plos. Optical fault
attacks on aes: A threat in violet. In 2009 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pages 13–22. IEEE, 2009.

[18] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical setup
time violation attacks on aes. In 2008 Seventh European Dependable
Computing Conference, pages 91–96. IEEE, 2008.

[19] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction
attacks. In International workshop on cryptographic hardware and
embedded systems, pages 2–12. Springer, 2002.

[20] Joseph Yiu. The Definitive Guide to ARM® Cortex®-M0 and Cortex-
M0+ Processors. Academic Press, 2015.

[21] Joseph Yiu. The anatomy of the arm cortex-m0+ processor. 2016.
[22] Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay

Deshpande, Conor Patrick, and Patrick Schaumont. Software fault
resistance is futile: Effective single-glitch attacks. In 2016 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 47–
58. IEEE, 2016.


