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Given an algebraic germ of a plane curve at the origin, in terms of a bivariate poly-
nomial, we analyze the complexity of computing an irreducible decomposition up to
any given truncation order. With a suitable representation of the irreducible compo-
nents, and whenever the characteristic of the ground field is zero or larger than the
degree of the germ, we design a new algorithm that involves a nearly linear number of
arithmetic operations in the ground field plus a small amount of irreducible univariate
polynomial factorizations.

KEYWORDS: contact factorization, approximate root, polynomial factorization, alge-
braic curve, complexity

1. INTRODUCTION

1.1. Motivation
Algebraic curves play a central role in algebraic geometry and various applications in
effective algebra. In particular, efficient algorithms are needed to compute topolog-
ical or analytic invariants, arithmetic genus, desingularized models, integral closures,
Riemann–Roch spaces, etc. Usual applications in computer algebra concern the irre-
ducible factorization of multivariate polynomials, the integration of rational functions,
the construction of algebraic geometry error correcting codes, the bi-linear complexity
of polynomial multiplication, etc. In the present paper, we are interested in computing
the irreducible factorization of any given polynomial P∈𝕂[[z]][x], where 𝕂 denotes
an effective field. Here “effective” means that algorithms are at our disposal for the arith-
metic operations and the zero test in𝕂.

Let 𝕂((z)) denote the fraction field of 𝕂[[z]] of Laurent series in z. The field

𝕂⟨⟨z⟩⟩≔�
i⩾1

𝕂((z1/i))
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1



of power series with fractional exponents is called the field of Puiseux series (or Puiseux
expansions) over 𝕂. Let 𝕂̄ denote the algebraic closure of 𝕂. If 𝕂 has characteristic
zero, then 𝕂̄⟨⟨z⟩⟩ is the algebraic closure of 𝕂((z)). In other words, any polynomial P
in𝕂((z))[x] splits into linear factors in 𝕂̄⟨⟨z⟩⟩[x].

Computations of Puiseux expansions of roots of P go back to Newton [62], and were
rediscovered by Puiseux [75]; see [5, p. 198] and [82, 86]. Thewell knownNewton polygon
method turns out to be effective whenever 𝕂̄ is effective. When adopting a suitable alge-
braic complexity model (in which running times are measured in terms of the required
number of arithmetic operations in 𝕂 or 𝕂̄), the complexity is easily seen to be poly-
nomial in the degree of P and in the required precision. However, at present time, we
are not aware of an algorithmwith a softly linear cost for any precision (especially below
the valuation of discriminant of P).

For the design of such a quasi-optimal algorithm, it is important to carefully state the
problem that needs to be solved. In particular, one has to pay attention to the ways in
which algebraic numbers and fractional power series are represented. It turns out that the
computation of Puiseux expansions is closely related to the computation of irreducible
factorizations in 𝕂[[z]][x] and that representation issues are more straightforward for
the latter problem.

In this paper, we therefore focus on the computation of irreducible factorizations. Our
main goal is the design of an efficient algorithm for factoring a polynomial P∈𝕂[[z]][x]
that is given modulo O(z𝜏) for a finite precision 𝜏∈ℕ, assuming that we already have
an algorithm for decomposing polynomials in𝕂[x] into irreducible factors.

1.2. Notations and assumptions
For complexity analyses, we consider algebraic complexity models (such as computa-
tion trees). In other words we simply count numbers of arithmetic operations and zero
tests in specified algebraic structures.

Until the end of the paper, 𝜖>0 is a fixed rational number that can be taken arbitrarily
close to zero. For complexity estimates we often use the soft-Oh notation: f (n)=Õ(g(n))
means that f (n)= g(n)(log(g(n)))O(1); see [26, chapter 25, section 7] for technical details.
The least integer larger or equal to x is written ⌈x⌉; the largest one smaller or equal to x is
written ⌊x⌋.

For randomized algorithms over a finite effective ring𝔸, we assume a special instruc-
tion that uniformly generates random elements in 𝔸 with constant cost. For a given
input, the cost of a randomized algorithm is thus a random variable. The expected cost for
input size s is defined as the maximum of the averages of these random variables over
all possible inputs of size ⩽s.

For a finite field𝔽q of characteristic p andwith q elements, the usual primitive element
representation will be used, so elements in 𝔽q will be regarded in 𝔽p[z]/(𝜈(z)) where 𝜈
is an irreducible polynomial of degree log q/log p.
Polynomials We useM(d) as a notation for the cost of multiplying two polynomials of
degree <d, in terms of the number of operations in the coefficient ring. We assume that
M(d)/d is a non-decreasing function in d. It is known [11, 77] that one can take M(d)=
O(d log d log log d). For rings of positive characteristic, one even has M(d)=O(d log d),
modulo a plausible number-theoretic conjecture [34]. We will also denote

𝔸[x]<d≔{P∈𝔸[x] :deg P<d}.

2 APPROXIMATE CONTACT FACTORIZATION OF GERMS OF PLANE CURVES



Algebraic towers A tower of algebraic extensions of𝕂 of height t is a sequence (𝔸i)i⩽twith
𝔸0=𝕂 and

𝔸i=𝔸i−1[xi]/(𝜇i(xi))

for a separable irreducible monic polynomial 𝜇i∈𝔸i−1[xi−1] and i=1, . . . , t. We set

si≔deg 𝜇i.

Products and inversions in𝔸t take Õ((s1 ⋅⋅⋅ st)1+𝜖) operations in𝕂. This was first proved
in [45] in the case when 𝔸t is a field and card 𝕂> �s1 ⋅ ⋅ ⋅ st2 �. The result was extended to
more general algebraic towers in [46]. Whenever card𝕂⩽ �s1 ⋅ ⋅ ⋅ st2 �, we may work in an
algebraic extension 𝕃 of degree n=O(log(s1 ⋅ ⋅ ⋅ st)) such that qn=card 𝕃> �s1 ⋅ ⋅ ⋅ st2 �. The
computation of such an extension can be done using Õ(p1/2 (n log q)O(1))= Õ(s1 ⋅ ⋅ ⋅ st)
operations in the prime subfield 𝔽p of𝕂, thanks to [79, Theorem 4.1]. For a fixed field𝕂,
this can be regarded as a precomputation, whereas computations with elements in 𝕃
instead of 𝕂 induce only a logarithmic overhead Õ(log (s1 ⋅ ⋅ ⋅ st)).
Factorization We define F𝕂(n; s1, . . . , st) to be an upper bound for the cost (expected or
not) of irreducible factorization of a polynomial in𝔸t[x]⩽n. It is convenient to introduce

F̄𝕂(m)≔m max
ns1⋅ ⋅ ⋅st⩽m

F𝕂(n; s1, . . . , st)
ns1 ⋅ ⋅ ⋅ st

,

so F̄𝕂(m)/m is a non-decreasing function in m.
For example, if 𝕂 is the finite field 𝔽q, then a well known probabilistic algorithm

due to Cantor and Zassenhaus [12] factors univariate polynomials in 𝔽q[x]⩽n using an
expected number of Õ(n2 log2 q) bit operations.

The currently best known algorithm is obtained as a combination of results due to
von zur Gathen, Kaltofen and Shoup [27, 48, 49], and Kedlaya and Umans [51]: it takes
an expected number of

F𝔽q(n)=O((n1.5 log q log p)1+𝜖)

bit operations; see [47, Corollary 5.1].
The case of a tower (𝔸i)i⩽t over 𝔽q=𝔸0 (with the above notation) reduces to the case

of 𝔽qs1⋅ ⋅ ⋅st by means of the fast change of representation of [70, Theorem 1.2], that applies
whenever

p> s1 ⋅ ⋅ ⋅ st
log q
log p. (1.1)

In terms of bit complexity, and for a “random access memory” computational model,
this yields

F𝕂(n; s1, . . . , st)=O((n1.5 s1 ⋅ ⋅ ⋅ st log q log p)1+𝜖).

Details can be found in [47, Corollary 5.3]. Whenever condition (1.1) is satisfied, wemay
then use the expected bit complexity bound

F̄𝔽q(m)=O((m1.5 log q log p)1+𝜖).

When the tower has small degrees si, optimized factorization procedures can be found
in [44, 47, 48]. In particular, if log q/log p is smooth, then polynomials of small degree
can even be factored in quasi-optimal time. Note that these optimizations do not depend
on Kedlaya–Umans' algorithm for modular composition.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3



For an abstract effective field 𝕂, there does not exist a general algorithm to factor
polynomials in𝕂[x] into irreducible ones [24, 25]. Throughout this paper, wewill there-
fore need to assume that such an algorithm is provided by the computational model:
K. Irreducible factorization in𝕂[x] is available within the computational model.
In practice, this property holdswhenever𝕂 is effectively finitely generated over its prime
subfield. Once factorization is available in𝕂[x], it is also available in𝔸t[x], with a com-
plexity that depends on those of resultants and gcds [81].

1.3. Related work
Let𝕂 still denote an effective field, let P(z,x)∈𝕂[[z]][x] be monic as a polynomial in x,
and assume that P(0, 0)=0. So P(z,x) defines a germ of curve at the origin. In practice,
we always truncate P at a finite order in z. For the discussion in the following paragraphs,
we therefore take P∈𝕂[z][x] and assume that P is monic, primitive, and separable in x,
of total degree ⩽d, and of partial degrees ⩽dz in z and ⩽dx in x.

Puiseux expansions If the characteristic of 𝕂 is zero or sufficiently large, then Puiseux
expansions to any given precision can be computed in polynomial time when consid-
ering an algebraic complexity model over 𝕂̄—this result belongs to the folklore.

Consider a Puiseux series x(z) that is a root of P. The shortest truncation of this series
which is different from any truncation of a distinct Puiseux series root of P is called the
singular part of x(z). In 1978, Kung and Traub [52] showed that the Puiseux expansion of
x(z) can be computed efficiently usingNewton's method, once its singular part is known.

The complexity of the computation of singular parts started to be studied in the
eighties. In [35], Henry and Merle showed that the embedded resolution of an irre-
ducible germ of curve defined by P(z, x)=0 at the origin can be computed with O(d8)
operations in 𝕂̄. In [19], Duval introduced the notion of rational Puiseux expansions, that
allowed computations over 𝕂̄ to be replaced by computations over 𝕂. She adapted the
usual Newton polygon algorithm to such a rational representation, and made use of
dynamic evaluation to handle algebraic extensions without polynomial factorization. She
achieved a total cost of O(d8) operations in 𝕂, whenever the characteristic is zero or
sufficiently large. This analysis was based on slow arithmetic for polynomials and series.

In his PhD thesis [68], Poteaux showed that Duval's algorithm takes at mostO(dx6dz2)
operations in𝕂 in order to obtain all the singular parts of the Puiseux expansions. In [69],
Poteaux and Rybowicz also proved that the singular parts of the rational Puiseux expan-
sions centered at a single point can be computed using Õ(dx3 dz+ dx2 log q) operations
in 𝕂, in the case when 𝕂=𝔽q; this bound relies on fast polynomial arithmetic. In [72],
Poteaux and Weimann finally gave a probabilistic algorithm that allows singular parts
to be computed with Õ(dx(valz(DiscxP)+1)) operations in𝕂, assuming that the charac-
teristic of𝕂 is zero or sufficiently large. This bound is quasi-optimal inworst cases, when
we need order about valz(Discx P) before root separation takes place [72, Example 8.1].
Their algorithmmakes use of dynamic evaluation and the singular parts are represented
by truncations of rational Puiseux expansions. These algorithms by Poteaux et al. also
extend efficiently to obtain the collection of all singular parts at each of the singular-
ities of the algebraic curve defined by P(z,x)=0. As a byproduct, Poteaux andWeimann
proved the expected complexity bound Õ(dx (valz(Discx P)+𝜏))+F𝕂(dx) for the irre-
ducible factors of P at precision O(z𝜏), still under the assumption that the characteristic
of 𝕂 is >dx; see [72, Theorem 1.6].
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When 𝕂=ℚ, a polynomial bit complexity for Puiseux series was first achieved
by Chistov [13]. The complexity bound for this case was subsequently detailed and
improved by Walsh [83, 84]. Since the complexity exponents are rather large, multi-
modular approaches turn out to be of practical interest [68].

Once singular parts are known, we have already mentioned that Puiseux expansions
can be extended by means of the Newton operator, as described in [52]; see also [39] for
recent optimizations. For small and moderate expansion orders, it is often more efficient
to use lazy or relaxed arithmetic to expand algebraic power series [38, 85]. For very large
expansion orders, yet another method is to compute a differential operator that annihi-
lates the expansions [15, 16]; see [8] for complexity bounds. It is also worth mentioning
that individual terms of algebraic Puiseux series over a finite field can be computed even
faster than with the Newton iteration [7].

Approximate roots In positive characteristic, the field of Puiseux series no longer coin-
cides with the algebraic closure of 𝕂((z)); see for instance [50]. Hamburger–Noether
expansions constitute a natural extension of Puiseux series in positive characteristic [9].

In his 1989 article [1], Abhyankar addressed a question from Kuo about an algo-
rithm to decide the irreducibility of a germ of curve, without using blowups or Puiseux
series. In characteristic zero, Abhyankar gave a positive answer to this question, by using
expansions of the defining polynomial of the germ with respect to so-called approximate
roots. These approximate roots can be determined recursively by means of a generalized
Newton polygon, previously introduced in [2, 3]. They generalize Tschirnhaus trans-
forms [80]. Complexity analyses can be found in [71, 73]: in favorable cases irreducibility
tests take softly linear time (plus a justifiable amount of irreducibility tests in𝕂[x]).

Abhyankar's work has been completed and extended to arbitrary characteristic by
Cossart andMoreno-Socías in [18], where they present an alternative construction based
on valuation theory. Themathematical relationship between approximate roots, Puiseux
expansions, and Hamburger–Noether expansions can be found in [73, 76].

Local factorizations Whenever 𝕃 is a local ring different from 𝕂[[z]], factorization in
𝕃[x] is a more difficult problem, for which Puiseux expansions cannot be used. The first
interesting case is when 𝕃 is the field ℚp of the p-adic numbers. Let F be a monic prim-
itive square-free polynomial in ℤ[x]. A first series of contributions concern the Round
Four algorithm due to Zassenhaus, and dedicated to the construction of integral bases
modulo F; see [17, 21, 22] for instance. The first polynomial time algorithm for factoring F
overℚp was given by Chistov [14], and then improved by Cantor and Gordon in [10].

After that, Pauli [67] designed a factorization algorithm over an algebraic extension
of degree k of ℚp with bit complexity

(d2valp(disc F)(d+valp(disc F)) log pk)1+o(1). (1.2)

Since 1999, Montes has been designing different algorithms; his irreducibility test of [57]
has been shown in [23] to have a complexity similar to (1.2).

The next improvements are due to Guàrdia, Montes, and Nart [29, 30]. They exploit
previous ideas by MacLane and Okutsu in order to compute so-called OM factorizations
(as a shorthand for “Okutsu–Montes factorizations”); see [61] for a survey. In [6], Bauch,
Nart, and Stainsby proved the bit complexity bound

O((d2+dvalp2(disc F)+dvalp(disc F) log pk)1+o(1))
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for an algebraic extension of degree k of ℚp. Further refinements and applications,
including the computation of integral closures, can be found in [20, 31, 32].

In [74] Poteaux and Weimann recently improved the latter complexity bound to

O((dvalp(disc F) log pk)1+o(1))

(discarding factorization costs in 𝔽p[x]) whenever p> d: they made use of the natural
“divide and conquer” extension of the generalizedHensel lifting of [33] and also applied
the same “increase of precision” strategy as in [72].
Non-archimedean value groups Various other generalizations of Puiseux expansions
have been investigated by van derHoeven, starting in 1997with his PhD thesis [37]. First
of all, he developed a framework for the resolution of algebraic equations over a field 𝕊
of generalized power series instead of𝕂[[z]]. One natural example is to take𝕊=𝕂((z)),
where𝕂 is an effective subfield of another field of Laurent series𝕜((u)). In this case, the
underlying value group of𝕊 becomes non-archimedean, and the issue arises how to con-
duct exact computations with truncated power series. This is easy if 𝕂=𝕜(u), but less
trivial if 𝕂 contains transcendental power series such as sin u, because of the required
zero test. We refer to [41, 42] for some recent perspectives on this type of computations.

The resolution of algebraic equations over fields 𝕊 of generalized power series is
still based on the Newton polygon method. However, the complexity can no longer be
analyzed in terms of the truncation order in a non-archimedean context. Instead, one
may consider the resolution of equations in Hensel position as a natural building block.
In [37], van derHoeven showed how to reduce the resolution of a general algebraic equa-
tion of degree d to at most 2d−1 applications of Hensel's lemma. It would be interesting
to analyze the complexity of this algorithm in the special cases that were considered
above.

Non-archimedean value groups are not merely a theoretical curiosity. Until recently,
effective counterparts of Hironaka's theory of standard bases for power series were only
known in the case of algebraic power series [4, 58]. In [42], generalized Puiseux series
have been put to develop elimination theories for more general power series, such as
differentially algebraic power series. Non-archimedean value groups actually arise in
a natural way when studying algebraic differential equations, and the Newton polygon
method can be generalized to this context; see [5] for recent progress and further refer-
ences.

1.4. Outline of the paper
The main purpose of this paper is to present a self-contained and quasi-optimal algo-
rithm for approximate factorization over rings of formal power series. We show how
to efficiently factor P into irreducible polynomials, and for each irreducible factor Pi we
construct generators of the valuation group of𝕂[[z]][x]/(Pi) in a form of a contact tower;
see Definition 3.1. An irreducible factorization of P modulo O(z𝜏) is a list of factors P1, . . . ,
Pr of P modulo O(z𝜏), along with their associated multiplicity and contact tower; see
Definition 7.6. In particular the Pi are irreducible, pairwise coprime, and we have

P=P1
m1 ⋅ ⋅ ⋅Pr

mr+O(z𝜏),

for some integers mi⩾1. The contact tower associated to Pi allows the computation of
the valuation in 𝕂[[z]][x]/(Pi) in softly linear time. The following main result will be
proved at the end of section 8.2:
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THEOREM 1.1. Let 𝜖 be a fixed positive value, and assume K. Let P∈𝕂[[z]][x] be monic of
degree n in x, known modulo O(z𝜏), and such that the characteristic of 𝕂 is zero or >n. Then,
an irreducible factorization of P modulo O(z𝜏) can be computed using

Õ(n1+𝜖𝜏)+2 F̄𝕂(n)
operations in 𝕂.

Example 1.2. Take 𝕂≔ℚ, 𝜏≔2, and P≔x2+O(z2). Then r=1, P1=x, and m1=2 is an
irreducible factorization of PmoduloO(z𝜏). Taking r=2, P1=x−z, P2=x+z,m1=m2=1,
we obtain another such factorization. This shows that approximate factorizations are not
unique in general.

Note that the term 2 F̄(n) is negligible with respect to n1+𝜖𝜏 as soon as the precision 𝜏
is sufficiently large. By using our approximate factorization algorithmwith a sufficiently
large precision, we deduce the following complexity bound for the actual irreducible
factorization of P; see section 9.5.

THEOREM 1.3. Let 𝜖 be a fixed positive value, and assume K. Let P∈𝕂[[z]][x] be monic and
separable of degree n in x and known at precision valz(DiscxP)+𝜎 in z with 𝜎>0. Assume that
the characteristic of 𝕂 is zero or >n. Then, the irreducible factors of P can be computed modulo
O(z𝜎) using

Õ(n1+𝜖 (valz(Discx P)+𝜎))+2 F̄𝕂(n)
operations in 𝕂.

Theorem 1.3 considers valz(DiscxP) as part of the input. This is not very restrictive in
characteristic zero or >valz(Discx P) thanks to [60, Theorem 1]. On the other hand, if P
belongs𝕂[z][x] then valz(DiscxP)⩽(2n−1)degz P can be computed with Õ(n2degz P)
operations in𝕂. Theorem 1.3 can be regarded as a deterministic counterpart of [72, The-
orem 1.6] and is also similar to [74, Theorem 4], although the underlying algorithms are
notably different. Our proofs are elaborated from scratch by taking special care of the
precisions and the cost of all factorizations in 𝕂[x]. We rely neither on Puiseux expan-
sions (contrary to [72]), nor on OM factorizations, nor on approximate roots, nor on the
“divide and conquer” strategy from [72, 74] on the precision. Instead, our algorithm
is based on a natural cascade of factorizations driven by Newton polytopes and a new
method to balance the depth of the recursive calls: namely our central shift algorithm of
section 7.7. Note that approximate factorizations in the sense of Theorem 1.1 (especially
below the valuation of the discriminant) are not assessed in [72, 74].

The algorithm behind Theorem 1.1 decomposes into several subtasks for which we
design efficient solutions. The first subtask concerns the computation of so-called distinct-
slope and equal-slope factorizations; see section 7. Distinct-slope factorizations separate the
factors of P according to the slopes of its Newton polygons. Equal-slope factorizations
serve a similar purpose for polynomials with a single slope. We achieve these compu-
tations in softly linear time by means of a generalized Hensel lifting, as explained in
section 4.

The contact factorization algorithm performs a cascade of distinct-slope and equal-
slope factorizations over increasing contact towers. When the tree modeling the succes-
sive splittings of P is not sufficientlywell balanced, the total complexitymoves away from
quasi-linearity. Our central shift algorithm of section 7.7 circumvents this issue through
tree-balancing. The top level algorithm is described in section 8.
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Computing over contact towers involves two difficulties. First, as for towers of alge-
braic field extensions, we do not know how to perform arithmetic operations in softly
linear time. We overcome this difficulty by doing most of the operations within the orig-
inal ring 𝕂[[z]][x] using a sufficiently high precision. The second difficulty concerns
zero tests and inversions in towers. In section 6, we introduce initial expansions, that can
be computed fast thanks to accelerated tower arithmetic [45].

As said, the power series setting from this paper is simpler than the one of gen-
eral local fields studied by Montes et al. Nevertheless, the main mathematical ideas are
roughly the same and go back to the work of MacLane [55, 56] on augmented valuations:
approximate roots, OM-factorizations, and contact towers share the same philosophy.

Compared to [55, 56], our contact towers represent a kind of a more general “aug-
mented semi-valuations“. Approximate roots can indeed be regarded as special cases
of contact towers but also of so-called “tipos” in [57]. Our contact factorization algo-
rithm does not rely on approximate roots: as explained in section 8.3, such roots may
be useful in practice, but it is a drawback that they are not preserved during factoriza-
tions. In fact, our new central shift strategy behaves as an algorithmic improvement with
respect to approximate roots; see section 2.6. While MacLane, and later Montes, focused
on constructing augmented (semi-)valuations over polynomial rings, our down-to-earth
and self-contained approach begins with designing efficient data structures in the vein
of triangular sets and Hironaka's standard bases [36]. In addition, let us mention that,
compared to [74], our multi-factor Hensel lifting of section 4 is based on a faster multi-
remaindering strategy.

Wewould also like to insist on our novel strategy for approximate factorizations, that
is behind Theorem 1.1. Roughly speaking, the problem here is similar to approximate
factorization in ℂ[x]. The first quasi-optimal algorithms for the computation of the dis-
tinct roots were designed for the case when the required precision is sufficiently high [66,
78]; more recently, a different algorithmwas proposed for small precisions [59]. Detailed
comparisons between all known algorithms for local factorization would be too long
and technical to be discussed here. Instead, we dedicate our next section to introduc-
tory examples that illustrate the computational difficulties that are common to all known
approaches.

At the end of the paper, a glossary is dedicated to the specific mathematical notations, and an
index gathers references to the main definitions.

2. INTRODUCTORY EXAMPLES

Before we give the formal definition of a contact factorization, we review a fewmotivating
examples from the complexity perspective.

2.1. Graded rings and Newton polygons

Let Γ̄ be a totally ordered abelian group and let Γ⊆Γ̄ be amonoid embedded in Γ̄. A graded
ring Rwith respect to the grading Γ is a direct sum

�
e∈Γ

Re,
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Figure 2.1. The Newton polygon of P(z,x)≔z4x+(z2+z4)x2+zx3+z2x4+x5+z5x6+x7+zx8+z3x9.
Each dot represents a monomial in P.

where theRe are abelian groups such that ReRf ⊆Re+ f for all e and f in Γ. An element of R
is said to be homogeneous if it belongs to one of the Re. Any element a in R can be uniquely
written ∑e∈Γ [a]e, where [a]e∈Re is called the homogeneous component of degree e of a. If
e∈Γ and 𝜂∈Γ̄>, then we also denote

[a]e;𝜂≔ �
f∈Γ

e⩽ f<e+𝜂

[a]f .

The initial form of a non-zero element a∈R, written in(a), is the non-zero homogeneous
component [a]e with the smallest index e. By convention we set in(0)≔0.

An ideal I of R is said to be homogeneous whenever it can be generated by homoge-
neous elements, or equivalently whenever the homogenous components of any element
of I also belong to I.

To each non-zero element a∈Rwemay associate the smallest index e ≔v(a) such that
[a]e≠0; we set v(0)≔∞. The map v:R→Γ∪{∞} is a semi-valuation, which means that it
satisfies v(a+b)⩾min(v(a),v(b)) and v(ab)⩾v(a)+v(b) for all a,b∈R. Given 𝜂∈Γ̄>, we
call [a]e;𝜂 the truncation of a at relative precision 𝜂.

The Newton polygon of a non-zero polynomial

P=P0+P1x+ ⋅ ⋅ ⋅ +Pdxxdx∈R[x]

of degree dx is the lower border of the convex hull inℝ⩾0×(Γ∪{∞}) of the set of points

{(i,v(Pi)) : 0⩽ i⩽dx,Pi≠0}.

Figure 2.1 illustrates this definition with R=𝕂[[z]] and Γ=ℕ. The Newton polygon is
thus a broken line with edges (i0, j0), . . . , (ir, jr), with r⩾0, such that:

• 0= i0< i1< ⋅ ⋅ ⋅ < ir,

• jk=v(Pik) for k=0, . . . , r,

• v(Pi)⩾
i− ik

ik+1− ik
v(Pik+1)+

ik+1− i
ik+1− ik

v(Pik), for all k and ik< i< ik+1 with Pi≠0,

• v(Pi)>
i− ik

ik+1− ik
v(Pik+1)+

ik+1− i
ik+1− ik

v(Pik), for all k and i< ik or i> ik+1 with Pi≠0.
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Intuitively speaking, these conditions mean that (i, v(Pi)) lies on or above the Newton
polygon. If P0=0, then we have i0≔0 and j0≔∞. Any k=1, . . . , r determines an edge Ek
with vertices (ik−1, jk−1) and (ik, jk). The Newton polynomial associated to Ek is

�
i∈ℕ,(i, j)∈Ek

[Pi]jxi−ik−1∈R[x].

Whenever Γ⊆ℝ, the slope of Ek is (jk− jk−1)/(ik− ik−1). The first slope is −∞ whenever
P0=0. Two consecutive edges have different slopes.

2.2. Explicit solutions versus factorization

In order to illustrate computations in algebraic extensions of 𝕂 or 𝕂[[z]], let us first
consider applying the Newton polygon method to an input polynomial of the form

P(z,x)=P0(x)+zP1(z,x),

where P0(x)∈𝕂[x] is a monic separable irreducible polynomial of degree dx and P1∈
𝕂[z,x] has degree <dx in x. We then consider

P(z,x)=0 (2.1)

as a polynomial equation in x. TheNewton polygon of P consists of a single edge starting
at (0,0) and ending at (dx, 0); its slope is 0.

Equation (2.1) has a solution in 𝔼[[z]], where 𝔼≔𝕂[x]/(P0(x)). Indeed, let 𝛼 be the
class of x in 𝔼. Replacing x by 𝛼+ x̃ in (2.1), we obtain the new equivalent equation

P0′(𝛼) x̃+
1
2 P0′′(𝛼) x̃+ ⋅ ⋅ ⋅ + 1

dx!
P0
(dx)(𝛼) x̃dx=zP1(z, 𝛼+ x̃). (2.2)

The separability of P0 implies P0′(𝛼)≠0, which allows us to apply Hensel's lemma: there
exists a unique solution x̃∈𝔼[[z]] with valuation v(x̃)>0 in z. This is the point of view
of factoring P in terms of Puiseux expansions.

In terms of space complexity, we note that computations in 𝔼 typically require dx
timesmore space than in𝕂. Fortunately, this is compensated by the fact that the “unique”
solution x̃ to (2.2) actually describes all dx solutions to (2.1) in 𝕂̄[[z]]. Indeed, any solu-
tion in 𝕂̄[[z]] is obtained by substituting a root 𝜁 ∈𝕂̄ of P0 for 𝛼 in the expression of x̃.

From a time complexity point of view, the resolution of (2.2) can be done efficiently
by using Newton's method. However, this involves truncated power series evaluations
of expressions such as P1(z, 𝛼+ x̃), where x̃∈𝔼[[z]]. These give in turn rise to modular
compositions (with modulus P0). Over general coefficient fields 𝕂, no quasi-optimal
algorithm (of complexity dx

1+o(1)) is currently known for this task, so it is preferable to
avoid such operations whenever possible. In particular, it is better to avoidworking over
algebraic extensions of the field 𝕂 of coefficients.

In order to avoid modular compositions, one idea is to consider that equation (2.1)
does not require any explicit resolution. In other words, it is already in such a simple
form that we may essentially consider it as “solved”. More generally, later in this paper,
we will consider an equation P(z,x)=0 as “solved” if and only if the Newton polygon
of P with respect to suitable “contact coordinates” has a single slope for which the asso-
ciated Newton polynomial is separable (and technically, irreducible).
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The problem of solving a general equation P(z,x)=0with P∈𝕂[z,x] then reduces to
the problem of factoring P as a product of “solved” polynomials. From this perspective,
expressing the solutions of P(z,x)=0 as Puiseux series becomes a rewriting problem for
“solved” polynomials, which is independent from the main resolution of the equation
P(z,x)=0 itself.

2.3. Contact coordinates
Consider the polynomial equation in x overℚ[[z]] given by

P(z,x)≔x4−6x2−5z2x+9=0. (2.3)

When solving this equation by means of the Newton polygon method, we see that the
Newton polygon of P has a single slope with associated Newton polynomial

x4−6x2+9=(x2−3)2.

In other words, all solutions of (2.3) are of the form x=𝛼1+o(1), where 𝛼12−3=0. Usu-
ally, the Newton polygon method proceeds by performing a change of variable

x=𝛼1+ x̃,

while imposing the constraint v(x̃)>0. So we are reduced to solving

P(z, 𝛼1+ x̃)= x̃4+4𝛼1 x̃3+12 x̃2−5z2 x̃−5z2𝛼1=0.

The Newton polygon has two edges: ((0, 2), (2, 0)) and ((2, 0), (4, 0)). Therefore v(x̃)=1
and we have 12 x̃2−5z2𝛼1=0+o(z2), so x̃=𝛼2z+o(z), where 12𝛼22−5𝛼1=0. We proceed
with the change of variable

x̃=𝛼2z+z x̃̃,

while imposing the constraint v(x̃̃)>0. So we are now led to solving

P(z, 𝛼1+𝛼2z+z x̃̃)/z2=0=24𝛼2 x̃̃+O(x2)+O(z).

The unique value of x̃̃ can therefore be computed efficiently by means of the Newton
iteration as a regular root of P(z, 𝛼1+𝛼2z+z x̃̃)/z2. However, this means that we have to
work over the algebraic extensionℚ[𝛼1, 𝛼2].

The idea behind contact calculus is to avoid computing over this type of algebraic
extensions, by working with respect to so-called contact coordinates instead. In the
present example, the idea is to rewrite (2.3) as

(x2−3)2−5z2x=0.
We next reinterpret this equation as

𝜑2
2−5z2𝜑1=0, (2.4)

where 𝜑1 and 𝜑2 are two new variables that are subject to the following constraints:
• 𝜑1=x, 𝜑2=𝜑1

2−3,
• v(𝜑1)=0 and v(𝜑2)>0.
The variables 𝜑1 and 𝜑2 can be regarded as unknowns, with values in the ring of Puiseux
series in z. These unknowns satisfy the system of equations

𝜑1=x, 𝜑2=𝜑1
2−3, 𝜑2

2−5z2𝜑1=0.
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In other words, computing Puiseux expansions of solutions to P is equivalent to com-
puting Puiseux expansions of solutions to the latter system. We note that 𝜑1

2− 3 is
separable in 𝜑1 and that the solutions for 𝜑1 begin with ± 3� +O(z). Then 𝜑2

2− 5 z2𝜑1
is separable in 𝜑2 for each solution 𝜑1, so the system admits the following solutions:

𝜑1 = 3� +O(z) 𝜑2 = 5 3�� z+O(z2)

𝜑1 = 3� +O(z) 𝜑2 = − 5 3�� z+O(z2)

𝜑1 = − 3� +O(z) 𝜑2 = 5 3�� iz+O(z2)

𝜑1 = − 3� +O(z) 𝜑2 = − 5 3�� iz+O(z2)

After the change of variable 𝜑2= z 𝜑̃2, these solutions are regular roots of the following
map modulo O(z):

(𝜑1, 𝜑̃2) ↦ (((((((((((((((((
z 𝜑̃2− (𝜑1

2−3)
𝜑̃2
2−5𝜑1 ))))))))))))))))).

By means of the Newton iteration, these roots may be lifted efficiently to any required
precision, and so may the corresponding solutions of P.

The variables 𝜑1 and 𝜑2 are called contact coordinates. Note that

P=(𝜑1
2−3)2+O(z2),

so the germ of the curve defined by 𝜑1
2− 3=0 approximates the one defined by P=0.

From a geometric point of view, the two germs are “in contact”.
Informally speaking, the Newton polygon of equation (2.4) in 𝜑2 has a single edge

of vertices (0, 2) and (2, 0), with associated Newton polynomial 𝜑2
2− 5 z2𝜑1, whence

v(𝜑2)=1. The precise meaning of this “generalized Newton polygon” will be the pur-
pose of section 7. Since the polynomial (𝜑2/z)2−5𝜑1 is separable in 𝜑2/z, we consider
the polynomial 𝜑2

2−5z2𝜑1 to be “solved”.
Working with contact coordinates is a little bit tricky, since 𝜑1 and 𝜑2 are related by

the equation 𝜑2=𝜑1
2− 3. Basic arithmetic operations and the Newton polygon method

therefore have to be adaptedwith care. It turns out that “contact calculus”with respect to
contact coordinates has a double flavor. At small orders 𝜏 in z, it boils down to working
in towers of algebraic extensions of ℚ[[z]]/(z𝜏). At large orders in z, we may convert
between polynomials in ℚ[[z]][x] and ℚ[[z]][𝜑1, 𝜑2]/(𝜑2−𝜑1

2+3) through the mech-
anism of (x2−3)-adic expansions.

In this paper, we have chosen to do most actual computations inℚ[[z]][x], since fast
algorithms for basic arithmetic operations in this ring are well known. However, conver-
sions between the “plain coordinates” (z,x) and the “contact coordinates” (z,𝜑1,𝜑2) incur
some precision loss. Fortunately, this precision loss can be controlled for the applica-
tions in this paper. Of course, it would be interesting to design a genuine fast arithmetic
for contact coordinates without precision loss.

2.4. Towards general contact coordinates
Example (2.3) has several variants that motivate the general definition of contact coor-
dinates in the next section. First of all, consider the equation

P(z,x)≔�x− 1
1−z�

4−6�x− 1
1−z�

2−5z20�x− 1
1−z�+9=0. (2.5)
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In that case, the contact coordinates would rather be 𝜑1= x− 1
1− z and 𝜑2=𝜑1

2− 3.
This illustrates that we do not systematically take 𝜑1= x, although we always do have
𝜑1−x∈𝕂[[z]] when working over𝕂.

Let us next consider the equation

P(z,x)≔((x2−3)2−5z2x)3+z7x=0. (2.6)

In this case, we start with the same contact coordinates 𝜑1=x and 𝜑2=𝜑1
2−3 as for (2.3),

but also need to introduce a third one 𝜑3=𝜑2
2−5z2𝜑1, subject to v(𝜑3)>2. In general, we

may need to introduce as many as ⌈log dx/log 2⌉ contact coordinates.
Yet another variant of (2.3) is the equation

P(z,x)≔x4−6x2+9−z2=0 (2.7)

We again use the same contact coordinates 𝜑1= x and 𝜑2=𝜑1
2− 3 as for (2.3), but this

time P(z,x) rewrites into 𝜑2
2−z2, that can be factored:

𝜑2
2−z2=(𝜑2+z)(𝜑2−z).

In general, these types of factorizations can be expensive to compute with respect to the
original coordinates and become more transparent for the contact coordinates.

2.5. Tschirnhaus transforms and approximate roots
Let us first consider the equation

P(z,x)=x2− 2
1−z x+

1
(1−z)2

−z100=0. (2.8)

When solving this equation using the usual Newton polygon method, we find that there
is a single slope v(𝜑1)=0, with 𝜑1=x, for which the associated Newton polynomial 𝜑1

2−
2𝜑1+1 has a single root 𝛼=1 of multiplicity 2. This means that the leading terms of the
Puiseux expansions are 1 and that the remaining terms can be found by performing the
change of variable x=1+ x̃ and solving the resulting equation for x̃:

x̃2− 2z
1−z x̃+

z2

(1−z)2
−z100=0.

In a similar way, we find the leading term z of x̃, which has againmultiplicity 2. We have
to go on like this for 50 steps until reaching the equation

x̂2− 2z50
1−z x̂+

z100

(1−z)2
−z100=0.

At this point there are two possible dominant terms for x̂ (namely 2z50 and z51), each of
multiplicity one, and we consider that we essentially solved the equation (more terms
can be obtained efficiently using Newton's method).

From the complexity point of view, the problem is that we need to recompute a new
equation at every step where we discover onemore term of the expansion, which is quite
expensive. A well known trick to replace the 50 steps by a single one is to compute the
solution 𝜉 =z/(1−z) to the derivative of the equation, that is

2𝜉− 2z
1−z=0,
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and directly set x=𝜉 + x̃ instead of x=1+ x̃. The new equation in x̃ then becomes

x̃2−z100=0,

after which the resolution process directly splits into two branches x̃= z50 and x̃=−z50.
In general, for a d-fold leading term, we need to consider a solution 𝜉 to the (d− 1)-
fold derivative of the equation. In that case, the change of variables x=𝜉 + x̃ is called a
Tschirnhaus transform.

For general contact coordinates, things become more technical, but similar strategies
apply. In general, if𝔸 is a ring with unity, if f is a monic polynomial of degree d in𝔸[x],
if m divides d, and if m is invertible in 𝔸, then there exists a unique monic polynomial
g∈𝔸[x] of degree d/m such that f − gm has degree <d−d/m; see section 8.3. The poly-
nomial g is called the m-th approximate root of f . If m=d, then the d-th approximate root
g=x−𝜉 ∈𝔸[x] corresponds to the Tschirnhaus transform x=𝜉+ x̃. In general, the g-adic
expansion of f writes as gm+um−1 gm−1+ ⋅ ⋅ ⋅ +u1 g+u0 where the ui are polynomials in
𝔸[x] of degree<deg g=d/m, so g is them-th approximate root of f if and only if um−1=0.

2.6. Central shifts

Let us now consider yet another type of equation with an almost d-fold multiple solution

P(z,x)≔(x−1)(x−1−z) ⋅ ⋅ ⋅ (x−1−z− ⋅ ⋅ ⋅−zd−1)=0. (2.9)

When solving the equation naively with the Newton polygonmethod, we obtain a d-fold
branch x=1+O(z) at the first step, a single branch x=1+O(z2) and a (d−1)-fold branch
x=1+ z+O(z2) at the second step, a single branch x=1+ z+O(z3) and a (d− 2)-fold
branch x=1+ z+ z2+O(z3) at the third step, and so on. From the complexity point of
view, factoring out a single branch at every step leads to a cost

O(d+(d−1)+(d−2)+ ⋅ ⋅ ⋅ +1)=O(d2)

as a function of d, which is not quasi-linear in d.
Using Tschirnhaus transforms is not really of any help. For instance, the (d−1)-fold

derivative of the equation yields

d! 𝜉− (d−1)! (d+(d−1)z+ ⋅ ⋅ ⋅ +zd−1)=0,

with solution 𝜉 =1+(1− /1 d)z+ ⋅ ⋅ ⋅. After the change of variable x=𝜉 + x̃, we still obtain
one single branch and one (d−1)-fold branch.

What really helps in this situation is a way to determine the series

𝜉 =1+z+ ⋅ ⋅ ⋅ +zd−1. (2.10)

This series has the property that, after the change of variable x=𝜉 + x̃, we obtain the
equivalent equation

(x̃+z+ ⋅ ⋅ ⋅ +zd−1)(x̃+z2+ ⋅ ⋅ ⋅ +zd−1) ⋅ ⋅ ⋅ (x̃+zd−1) x̃=0,

whoseNewton polygon has d−1 edges. In particular, the resolution process nowbranches
into d distinct parts of multiplicity one.
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Computing the series (2.10) is equivalent to “solving” P. But instead of peeling off
factors of degree one from the left-hand side of (2.9), we rather compute 𝜉 with precision
about d/2 in a recursive manner. This allows to factor P as the product of two polyno-
mials of degree close to d/2, and to repeat this process in a recursive manner. Series
such as (2.10) will be called central shifts. For a general polynomial equation P(z,x)=0,
even within contact coordinates, the central shift will allow us to guarantee a suitably
balanced factorization P=AB for which A and B can recursively be factored with good
complexity.

3. CONTACT CALCULUS

This section formalizes the concept of contact towers. The effective ground field is
written𝕂 and the contact coordinates will be denoted by 𝜑1, . . . ,𝜑t.

3.1. Weighted valuations
We endow 𝕂[[z,𝜑1, . . . ,𝜑t]] with the weighted valuation, simply written “val”, defined
by val z=1 and val 𝜑i=𝛾i∈ℚ for i=1, . . . , t. With

Γt=ℕ+𝛾1ℕ+ ⋅ ⋅ ⋅ +𝛾tℕ,

this valuation induces a grading

𝕂[[z,𝜑1, . . . ,𝜑t]]=�
e∈Γt

𝕂[[z,𝜑1, . . . ,𝜑t]]e,

where𝕂[[z,𝜑1,...,𝜑t]]e is the set of polynomials made only of terms of valuation e; notice
that 𝕂[[z,𝜑1, . . . ,𝜑t]]0=𝕂. When no confusion is possible, we drop “weighted”.

Let Rt be the least common multiple of the denominators of 𝛾1, . . . , 𝛾t. Then, the Chi-
nese remainder theorem implies the following identity for the group completion Γ̄t of Γt:

Γ̄t=ℤ+�
i=1

t

ℤ𝛾i=ℤ 1
Rt

.

The integer Rt is called the ramification index of the valuation.

3.2. Contact towers
The following definition is central for the rest of this paper.

DEFINITION 3.1. A contact tower of height t consists of:
• Variables 𝜑1, . . . ,𝜑t, called contact coordinates;
• Defining polynomials Φi∈𝕂[[z]][𝜑1, . . . ,𝜑i] for i=1, . . . , t;
• Rational numbers 𝛾1, . . . , 𝛾t, called weights.
These data are required to satisfy the following properties:
• Φi is monic in 𝜑i of degree di⩾1;
• deg𝜑j Φi<dj, for i=2, . . . , t and j=1, . . . , i−1;
• 𝛾1⩾0 and di𝛾i⩾1 for i=2, . . . , t;
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• We endow𝕂[[z,𝜑1, . . . ,𝜑t]] with the weighted valuation defined by val z=1 and val 𝜑i=𝛾i
for i=1, . . . , t. We demand that:
∘ val Φi=di𝛾i, for i=1, . . . , t;
∘ 𝛾i+1>di𝛾i, for i=1, . . . , t−1.

The tower is said to be reduced when di⩾2 for i=2, . . ., t. Unless explicitly stated, the towers in
this paper will be almost reduced in the sense that di⩾2 for i=2, . . . , t−1.

The weights 𝛾1, . . . , 𝛾t will also be called the contact slopes, in reference to the slopes
of the corresponding Newton polygons; see section 7.3. When a contact tower is almost
reduced then t=O(log(d1 ⋅ ⋅ ⋅ dt)) holds. The degree of the tower is d1 ⋅ ⋅ ⋅ dt.

Example 3.2. t=1, Φ1=𝜑1
2−3, 𝛾1=0 form a contact tower of height 1.

Example 3.3. Consider the example (2.6). It turns out that t=2, Φ1=𝜑1
2− 3 and Φ2=

𝜑2
2−5z2𝜑1 form a contact tower with contact slopes 𝛾1=0, 𝛾2=1. Here we got 𝛾1 and 𝛾2

from 2𝛾1=val(𝜑1
2)=val(−3)=0 and 2𝛾2=val(𝜑2

2)=val(5z2𝜑1)=2.

We introduce another independent variable 𝜑t+1 of weight 𝛾t+1 and subject to the
constraint 𝛾t+1>dt𝛾t. We also define the ideal

It≔(Φ1−𝜑2, . . . ,Φt−1−𝜑t,Φt−𝜑t+1)⊆𝕂[[z,𝜑1, . . . ,𝜑t+1]],

and the corresponding quotient ring

𝕊t≔𝕂[[z,𝜑1, . . . ,𝜑t+1]]/It.

3.3. Canonical representation
In the following paragraphs, we show that 𝕊t is effective for computations with finite
truncation orders in z and 𝜑t+1. For this, we adopt the point of view of standard bases,
while doing the proofs from scratch for completeness. We recall that the lexicographic
ordering <lex onℕn is defined as follows:

(a1, . . . ,an)<lex(b1, . . . ,bn)⟺∃j∈{1, . . . ,n} such that a1=b1, . . . ,aj−1=bj−1,aj<bj.

We also introduce a total ordering ≺ with

z≺𝜑t+1≺𝜑1≺ ⋅ ⋅ ⋅ ≺𝜑t≺1

on the group zℕ𝜑1
ℕ ⋅ ⋅ ⋅ 𝜑t+1

ℕ ≔{ze0𝜑1
e1 ⋅ ⋅ ⋅ 𝜑t+1

et+1 : e0, . . . , et+1∈ℕ} by

ze0𝜑1
e1 ⋅ ⋅ ⋅ 𝜑t+1

et+1≻z f0𝜑1
f1 ⋅ ⋅ ⋅ 𝜑t+1

ft+1

⟺
e0+ e1𝛾1+ ⋅ ⋅ ⋅ + et+1𝛾t+1< f0+ f1𝛾1+ ⋅ ⋅ ⋅ + ft+1𝛾t+1 or

{{{{{{{{{{{{{{e0+ e1𝛾1+ ⋅ ⋅ ⋅ + et+1𝛾t+1= f0+ f1𝛾1+ ⋅ ⋅ ⋅ + ft+1𝛾t+1 and
(et, . . . , e1, et+1, e0)>lex( ft, . . . , f1, ft+1, f0).

The ordering ≺ is a monomial ordering in the sense that

ze0𝜑1
e1 ⋅ ⋅ ⋅ 𝜑t+1

et+1≺z f0𝜑1
f1 ⋅ ⋅ ⋅ 𝜑t+1

ft+1

implies
ze0+g0𝜑1

e1+g1 ⋅ ⋅ ⋅ 𝜑t+1
et+1+gt+1≺z f0+g0𝜑1

f1+g1 ⋅ ⋅ ⋅ 𝜑t+1
ft+1+gt+1
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for all (g0, . . . , gt+1)∈ℕt+2. The leading monomial lm P of P∈𝕂[[z, 𝜑1, . . . , 𝜑t+1]] with
respect to this ordering is defined to be the largest monomial with a non-zero coefficient
in P. The set of monomials spanned by the leading monomials of the elements of an
ideal I is written lm I. Note that zℕ𝜑1

ℕ ⋅ ⋅ ⋅ 𝜑t+1
ℕ lm I⊆lm I. With the terminology of [28],

the ordering ≺ is called a negative weighted degree lexicographic local ordering.
A standard basis of an ideal I⊆𝕂[[z, 𝜑1, . . . , 𝜑t+1]] with respect to the monomial

ordering ≺ is a set of generators g1, . . . , gs such that the leading monomial of any poly-
nomial in I is a multiple of the leading monomial of at least one of the gi. In other words,
lm I is generated by lm g1, . . . , lm gs. A standard basis is said to be reduced whenever
none of the non-leading monomials in the gi belong to lm I.

For the completeness, we now prove two well known lemmas from the theory of
standard bases.

LEMMA 3.4. in(Φ1), . . . , in(Φt) is a reduced standard basis of (in(Φ1), . . . , in(Φt)) for ≺.

Proof. Since Φ1, . . . ,Φt are independent of 𝜑t+1, it suffices to prove the lemma in 𝕂[[z,
𝜑1, . . . , 𝜑t]]. According to the assumptions, in(Φi)= [Φi]di𝛾i is monic of degree di in 𝜑i,
and deg𝜑j Φi<dj for all i=1, . . . , t and j=1, . . . , i−1. Therefore,

lm(in(Φi))=lmΦi=𝜑i
di

for i=1, . . . , t. The lemma follows from general standard basis theory since the leading
monomials of the in(Φi) share no variable. For completeness, we give a dedicated proof.

Let us prove by induction on i⩾1 that in(Φ1), . . . , in(Φi) is a standard basis for the
ideal (in(Φ1), . . . , in(Φi)) in 𝕂[[z,𝜑1, . . . ,𝜑i]]. This clearly holds for i=1. Let us assume
that the induction hypothesis holds for some i⩾1 and consider H∈(in(Φ1), . . . , in(Φi)).
If deg𝜑iH⩾di, then lmH is a multiple of lmΦi. Otherwise, we write

H(z,𝜑1, . . . ,𝜑i)=H0(z,𝜑1, . . . ,𝜑i−1)+H1(z,𝜑1, . . . ,𝜑i−1)𝜑i+ ⋅ ⋅ ⋅ +Hk(z,𝜑1, . . . ,𝜑i−1)𝜑i
k,

with k<di and Hk≠0. Then

0 = Hmod (in(Φ1), . . . , in(Φi))
= H0mod (in(Φ1), . . . , in(Φi−1))+ ⋅ ⋅ ⋅ +(Hkmod (in(Φ1), . . . , in(Φi−1)))𝜑i

k,

so Hk belongs to the ideal (in(Φ1), . . . , in(Φi−1)) of 𝕂[[z,𝜑1, . . . ,𝜑i−1]]. By the induction
hypothesis, lmHk is a multiple of 𝜑j

dj for some j< i, whence so is lmH. It follows that
in(Φ1), . . . , in(Φt) is a standard basis. The fact that it is reduced is clear from degree
considerations. □

For k< l, we define
Sk,l≔(0, . . . , 0,−Φl, 0, . . . , 0,Φk, 0, . . . , 0)

where −Φl stands at position k and Φk at position l. Note that the dot product
Sk,l ⋅ (Φ1, . . . ,Φt) is identically zero. For G≔(G1, . . . ,Gt), the initial form of G, still written
in(G), is defined as (in(G1), . . . , in(Gt)).

LEMMA 3.5. If H1 in(Φ1)+ ⋅⋅ ⋅+Ht in(Φt)=0 for homogeneous H1, . . .,Ht∈𝕂[[z,𝜑1, . . .,𝜑t]],
then

(H1, . . . ,Ht)∈ �
1⩽k<l⩽t

𝕂[[z,𝜑1, . . . ,𝜑t]] in(Sk,l). (3.1)
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Proof. We prove the lemma by induction on t. For t=0, we have nothing to prove, so
assume that t⩾1. Extracting homogeneous components, we may assumewithout loss of
generality that

val(Hi in(Φi))=val(Hj in(Φj))

wheneverHi≠0 andHj≠0. By the induction hypothesis, wemay also assume thatHt≠0.
Long division of Ht by in(Φ1), . . . , in(Φt−1) yields

Ht=Q1 in(Φ1)+ ⋅ ⋅ ⋅ +Qt−1 in(Φt−1)+R

for homogeneous polynomials Q1, . . . ,Qt−1,R∈𝕂[[z, 𝜑1, . . . , 𝜑t]] with deg𝜑i R< di, for
i=1, . . . , t−1.

Reducing the relation H1 in(Φ1)+ ⋅ ⋅ ⋅ +Ht in(Φt)=0 modulo (in(Φ1), . . . , in(Φt−1)),
we obtain

R in(Φt)=0mod (in(Φ1), . . . , in(Φt−1)).

SinceΦt is monic in 𝜑t, it follows that R=0mod (in(Φ1),..., in(Φt−1)), and thus that R=0.
Consequently, we obtain

(H1, . . . ,Ht)=(H1, . . . ,Ht−1,Q1 in(Φ1)+ ⋅ ⋅ ⋅ +Qt−1 in(Φt−1)),

which implies

(H̃1, . . . , H̃t−1, 0) ≔ (H1+Q1 in(Φt), . . . ,Ht−1+Qt−1 in(Φt), 0)
= (H1, . . . ,Ht)−Q1 in(S1,t)− ⋅ ⋅ ⋅−Qt−1 in(St−1,t).

Let i=1, . . . , t−1. If Qi=0, then H̃i=Hi is homogeneous. Otherwise, we have

val(Qi in(Φt)) = valHt−valΦi+val Φt

= val(HtΦt)−val Φi

= val(HiΦi)−val Φi

= valHi,

so H̃i is also homogeneous. Each H̃i can be expanded with respect to 𝜑t:

H̃i=�
j⩾0

H̃i, j𝜑t
j,

with H̃i, j∈𝕂[[z,𝜑1, . . . ,𝜑t−1]]. Then we have

0 = ((((((((((((((�j⩾0
H̃1, j𝜑t

j

)))))))))))))) in(Φ1)+ ⋅ ⋅ ⋅ +((((((((((((((�j⩾0
H̃t−1, j𝜑t

j

)))))))))))))) in(Φt−1)

= �
j⩾0

(H̃1, j in(Φ1)+ ⋅ ⋅ ⋅ + H̃t−1, j in(Φt−1))𝜑t
j,

which implies H̃1, j in(Φ1)+ ⋅⋅⋅+H̃t−1, j in(Φt−1)=0 for all j⩾0. We conclude by applying
the induction hypothesis. □

LEMMA 3.6. If H1 in(Φ1)+⋅⋅⋅+Ht in(Φt)=0 holds with Hi homogeneous in𝕂[[z,𝜑1,...,𝜑t+1]],
then there exist G1,...,Gt in𝕂[[z,𝜑1,...,𝜑t+1]] such that G1(Φ1−𝜑2)+⋅⋅⋅+Gt(Φt−𝜑t+1)=0
and in(Gi)=Hi for i=1, . . . , t.

Proof. We expand each Hi with respect to the variable 𝜑t+1:

Hi=�
j⩾0

Hi, j𝜑t+1
j , where Hi, j∈𝕂[[z,𝜑1, . . . ,𝜑t]].
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For all j⩾0, we get
H1, j in(Φ1)+ ⋅ ⋅ ⋅ +Ht, j in(Φt)=0,

so Lemma 3.5 ensures the existence of homogeneous polynomialsQk,l
{j} in𝕂[[z,𝜑1,...,𝜑t]]

such that
(H1, j, . . . ,Ht, j)= �

1⩽k<l⩽t
Qk,l

{j} in(Sk,l).

Letting Qk,l≔∑j⩾0Qk,l
{j}𝜑t+1

j , we deduce that

(H1, . . . ,Ht)= �
1⩽k<l⩽t

Qk,l in(Sk,l).

Since the Hi are homogeneous, up to replacing the Qk,l by their homogeneous compo-
nents of suitable valuation, we may assume that
• the Qk,l are homogeneous,
• valHk=val(Qk,l in(Φl)) holds for all k< lwith Hk≠0 and Qk,l≠0,
• valHl=val(Qk,l in(Φk)) holds for all k< lwith Hl≠0 and Qk,l≠0.
For k< l, we introduce the vectors

S̄k,l≔(0, . . . , 0,−(Φl−𝜑l+1), 0, . . . , 0,Φk−𝜑k+1, 0, . . . , 0),

where −(Φl−𝜑l+1) stands at position k and Φk−𝜑k+1 at position l, so the dot product
S̄k,l ⋅ (Φ1−𝜑2, . . . ,Φt−𝜑t+1) is identically zero. We set

(G1, . . . ,Gt)≔ �
1⩽k<l⩽t

Qk,l S̄k,l.

Using the fact that 𝛾i+1=val 𝜑i+1>valΦi=di𝛾i, we conclude that

in(G1, . . . ,Gt)=in(((((((((((((( �
1⩽k<l⩽t

Qk,l S̄k,l))))))))))))))= �
1⩽k<l⩽t

Qk,l in(Sk,l)=(H1, . . . ,Ht). □

LEMMA 3.7. We have in(It)=(in(Φ1), . . . , in(Φt)).

Proof. Let P∈ It, so there exist P1, . . . ,Pt∈𝕂[[z,𝜑1, . . . ,𝜑t+1]] with

P=P1(Φ1−𝜑2)+ ⋅ ⋅ ⋅ +Pt(Φt−𝜑t+1).

We repeat the following operations:
1. Let 𝜂≔min(val Pi+val Φi : i=1, . . . , t). Since val 𝜑i+1>val Φi=di𝛾i, we always have

𝜂⩽val P. If 𝜂=val P, then we obtain a relation

in(P)=�
i∈𝒮

in(Pi) in(Φi)

where 𝒮 is the non-empty subset of indices i such that valPi=𝜂−di𝛾i, so we are done.
2. Otherwise 𝜂<val P, hence ∑i∈𝒮 in(Pi) in(Φi)=0. The latter relation can be lifted to

∑i=1
t Gi (Φi−𝜑t+1)=0 with in(Gi)=in(Pi) for i=1, . . . , t, by Lemma 3.6.

3. Replace the vector (P1, . . . ,Pt) by (P1, . . . ,Pt)− (G1, . . . ,Gt), and go to step 1.
Thanks again to the assumption val 𝜑i+1>valΦi=di𝛾i, the relation P=P1(Φ1−𝜑2)+⋅⋅⋅+
Pt(Φt−𝜑t+1) holds after each iteration. Furthermore, the value of 𝜂 strictly increases, so
the process converges. We conclude that in(P)∈(in(Φ1), . . . , in(Φt)). □
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PROPOSITION 3.8. Φ1−𝜑2, . . . ,Φt−𝜑t+1 is a standard basis of It for ≺. It is reduced whenever
the contact tower is reduced.

Proof. Assume that P≠0 belongs to It. Then lmP=lm(in(P)), so Lemma 3.7 implies that
lmΦi=lm(in(Φi)) | lm P for some i. □

From Proposition 3.8, we know that an element a of 𝕊t can be uniquely represented
by a polynomial A(𝜑1, . . . , 𝜑t+1)∈𝕂[[z, 𝜑t+1]][𝜑1, . . . , 𝜑t] of partial degree <di in 𝜑i for
i=1, . . . , t. We call A the canonical representative of a.

We introduce contact towers as a tool for the local resolution of polynomial equa-
tions. For this, we will often reduce to the case when all the roots of the polynomial are
in the local region of interest. Such polynomials are said to be “clustered”:

DEFINITION 3.9. An element a in 𝕊t is a clustered polynomial if its canonical representative
is monic in 𝜑t+1 of degree l⩾1 and if v(a)= l𝛾t+1.

Example 3.10. For the contact tower of Definition 3.1, the polynomial Φi is a clustered
polynomial regarded in 𝕊i for i=1, . . . , s.

3.4. Arithmetic in contact towers
The theory of standard bases comes with algorithms to compute modulo ideals given by
standard bases. We now detail how to perform such computations in the case of 𝕊t.

Additions, subtractions and scalarmultiplications are straightforward, but other oper-
ations require an appropriate treatment of “carries” within Φi-adic expansions. For the
contact coordinates of Example 3.3, let us briefly illustrate how carries occur duringmul-
tiplications.

Example 3.11. In Example 3.3 the polynomials Φ1=𝜑1
2− 3 and Φ2=𝜑2

2− 5 z2𝜑1 form a
contact tower with contact slopes 𝛾1=0, 𝛾2=1.

Let us first illustrate the computation of a product modulo I2:

a≔(𝜑3+𝜑1𝜑2)(𝜑1𝜑3−3z𝜑2+𝜑1)mod I2.

Doing a direct polynomial multiplication, we obtain

a=𝜑1𝜑3
2+(𝜑1

2𝜑2−3z𝜑2+𝜑1)𝜑3−3z𝜑1𝜑2
2+𝜑1

2𝜑2mod I2,

which is not in canonical representation since the degrees in 𝜑1 and 𝜑2 are too high. We
thus have to rewrite

𝜑1
2𝜑2=(𝜑2+3)𝜑2mod I2=𝜑3+3𝜑2+5z2𝜑1mod I2

and
𝜑1𝜑2

2=𝜑1𝜑3+5z2𝜑1
2mod I2=𝜑1𝜑3+5z2𝜑2+15z2mod I2.

At the end, this leads to the following canonical representation for a modulo I2:

a=(𝜑1+1)𝜑3
2+((3−3z)𝜑2+(1−3z+5z2)𝜑1+1)𝜑3+(3+15z3)𝜑2+5z2𝜑1+45z3mod I2.

The canonical representative A of an element a in 𝕊t can uniquely be written as

A=�
i⩾0

Ai(𝜑1, . . . ,𝜑t)𝜑t+1
i ,
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where Ai∈𝕂[[z]][𝜑1, . . . ,𝜑t] satisfies deg𝜑jAi<dj for j=1, . . . , t. Similarly, the canonical
representative B of another element b∈𝕊t can be written as

B=�
i⩾0

Bi(𝜑1, . . . ,𝜑t)𝜑t+1
i .

Now assume that Bi=0 for sufficiently large values of i. Then we may regard b as a uni-
variate polynomial in 𝜑t+1: the “degree of b in 𝜑t+1”, written deg𝜑t+1 b, is defined as the
largest integer n such that Bn≠0. We say that b is “monic of degree n in 𝜑t+1” when Bn=1
and Bi=0 for i>n.

Nowwe ask whether we can define and compute a generalized Euclidean division of
a by b. The answer is “yes” under suitable assumptions. More generally, the following
lemma shows that there exists a unique b-adic expansion of a.

LEMMA 3.12. With the above notation let us assume that b is clustered atℙt and has degree n⩾1
in 𝜑t+1. Then, there exist unique elements qi in ℙt satisfying

a=�
i⩾0

qibi,

and such that deg𝜑t+1 qi<n for all i⩾0.

Proof. This lemma is a reformulation of what we have already provedwith contact coor-
dinates. In fact, it suffices to increase the height of the tower by one, to set

Φt+1≔�
i=0

n

Bi(𝜑1, . . . ,𝜑t)𝜑t+1
i ,

dt+1≔n, and to assign any weight 𝛾t+2>dt+1𝛾t+1 to the new variable 𝜑t+2. Therefore, the
canonical representative of the image of a in 𝕊t+1 is given by

a=�
i⩾0

Ei(𝜑1, . . . ,𝜑t+1)𝜑t+2
i ,

where deg𝜑j Ei<di for j=1, . . . , t+1. Consequently the above b-adic expansion of a exists
with qi≔Ei(𝜑1, . . . ,𝜑t+1).

As for uniqueness, let the qi be as in the statement of the lemma, and let us write them
qi=Qi(𝜑1, . . . ,𝜑t+1)

with deg𝜑t+1Qi<dt+1. The Qi must satisfy

�
i⩾0

Ai(𝜑1, . . . ,𝜑t)𝜑t+1
i −�

i⩾0
Qi(𝜑1, . . . ,𝜑t+1)Φt+1

i (𝜑1, . . . ,𝜑t)∈ It,

that implies

�
i⩾0

Ai(𝜑1, . . . ,𝜑t)𝜑t+1
i −�

i⩾0
Qi(𝜑1, . . . ,𝜑t+1)𝜑t+2

i ∈ It+1= It+(Φt+1−𝜑t+2).

It follows that the Qi do exist and are uniquely determined by the canonical representa-
tive of a in 𝕊t+1. □

DEFINITION 3.13. With the notation of Lemma 3.12, ∑i⩾1 qib
i−1 and q0 are respectively called

the quotient and remainder of the Euclidean division of a by b, and are written ∑i⩾1 qi b
i−1=

a quo b and q0=a rem b.

Example 3.14. With the contact coordinates of Example 3.11, take

a≔𝜑2𝜑3 and b≔𝜑3−𝜑2.
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We have

a = 𝜑2b+𝜑2
2mod I2

= 𝜑2b+𝜑3+5z2𝜑1mod I2
= (𝜑2+1)b+𝜑2+5z2𝜑1mod I2.

Therefore the division of a by bwrites a=qb+ r with q≔𝜑2+1 and r≔𝜑2+5z2𝜑1.

3.5. Plain coordinates
In what follows, we will restrict ourselves to computations with “polynomials” in

ℙt≔𝕂[[z]][𝜑1, . . . ,𝜑t+1]/It
instead of “series” in 𝕊t. Elements a inℙt can be represented canonically by polynomials
A(𝜑1, . . . , 𝜑t+1)∈𝕂[[z]][𝜑1, . . . , 𝜑t+1] of partial degrees <di in 𝜑i for i=1, . . . , t. In order
to alleviate terminology, we call elements in ℙt contact polynomials, in which case we
always assume that a is represented canonically as a polynomial cl𝜑t+1

l + ⋅ ⋅ ⋅ + c0 in 𝜑t+1
with c0, . . . , cl∈ℙt−1; we will also call this the contact representation. At the same time, we
will keep the terminology of “canonical representatives” whenever we need to carefully
distinguish between a and its actual polynomial representative A.

By what precedes, we may recursively expand elements in ℙt with respect to 𝜑t+1,
𝜑t,..., until 𝜑1. However, from a computational point of view such recursiveΦ-adic expan-
sions are expensive. Indeed such expansions are reminiscent of computationsmodulo tri-
angular sets, so it would be interesting to examine whether the algorithms of [45] could
be adapted or not. In this subsection we follow another direction that leads to efficient
algorithms. The key idea is to rewrite elements in ℙt with respect to the plain coordi-
nates z and x. For this purpose, we introduce the following polynomials:

Ψ0(x) ≔ x,
Ψi(x) ≔ Φi(Ψ0(x), . . . ,Ψi−1(x)), i=1, . . . , t.

Note that Ψi is monic of degree d1 ⋅ ⋅ ⋅ di. The change of representation is presented in the
following lemma:

LEMMA 3.15. The following map is a 𝕂[[z]]-algebra isomorphism:

Πt: ℙt ≅ 𝕂[[z]][x] (3.2)
𝜑i+1 ⟼ Ψi(x) for i=0, . . . , t.

Proof. We introduce the following auxiliary evaluation morphism over𝕂[[z]]:

Π̃t: 𝕂[[z]][𝜑1, . . . ,𝜑t+1] ⟶ 𝕂[[z]][x]
𝜑i+1 ⟼ Ψi(x) for i=0, . . . , t.

For i=1, . . . , t, we have

Π̃t(Φi(𝜑1, . . . ,𝜑i)−𝜑i+1)=Φi(Ψ0(x),Ψ1(x), . . . ,Ψi−1(x))−Ψi(x)=0,

so Φi(𝜑1, . . . ,𝜑i)−𝜑i+1∈ker Π̃t and Πt is well defined.
Let us prove by induction on t thatΠt is bijective. This is clear when t=0, so assume

that t⩾1. Let P∈𝕂[[z]][x] be of degree<ld for some integer l⩾0. TheΨt-adic expansion
of P yields a polynomial

Qt(x,𝜓t+1)=Qt,0(x)+ ⋅ ⋅ ⋅ +Qt,l−1(x)𝜓t+1
l−1∈𝕂[[z]][x,𝜓t+1]
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such that Qt(x,Ψt(x))=P(x) and Qt,i∈𝕂[[z]][x]<d for i=0,. . ., l−1. Next we recursively
compute Q̂t,i(𝜑1, . . . ,𝜑t)≔Πt−1

−1 (Qt,i) for i=0, . . . , l−1. This yields

P̂(𝜑1, . . . ,𝜑t+1)≔ Q̂t,0(𝜑1, . . . ,𝜑t)+ ⋅ ⋅ ⋅ + Q̂t,l−1(𝜑1, . . . ,𝜑t)𝜑t+1
l−1

with P=Πt(P̂). This proves that Πt is surjective.
Now let P̂∈kerΠt be non-zero. Since degx(Πt(P̂))⩾d1 ⋅ ⋅ ⋅ dtdeg𝜑t+1 P̂, we must have

deg𝜑t+1 P̂⩽0, that is P̂∈kerΠt−1. The induction hypothesis implies that P̂=0. □

3.6. Conversion costs
As seen in the proof of Lemma 3.15, the isomorphism Πt corresponds to a cascade of
Φi-adic expansions for i=1, . . . , t. We begin with recalling known costs for univariate
expansions over an effective ring 𝔸.

LEMMA 3.16. Let f ∈𝔸[x]<n and let g∈𝔸[x] be monic of degree d. The g-adic expansion of f
can be computed using O(M(n) log(⌈n/d⌉+1)) operations in 𝔸.

Proof. Without loss of generality, we may assume that n=2k d for some integer k⩾0.
We compute g2,g4, . . . ,g2k−1

using O(M(n)) operations in𝔸. We divide f by g2
k−1
, so f =

f0+ f1g2
k−1

with deg f0<2k−1d and deg f1<2k−1d. Thenwe compute the g-adic expansion
of f0 and f1 in a recursive manner so the expansion of f is obtained by merging those of
f0 and f1. The depth of the recursive calls is k=O(log(⌈n/d⌉+1)). The sum of the costs
of the operations at depth l is O(M(n)), whence the claimed bound. □

LEMMA 3.17. Let f0, . . . , fl be polynomials in𝔸[x]<d and let g be a monic polynomial of degree d
in𝔸[x]. Then, f0+ f1g+ ⋅ ⋅ ⋅ + fl−1gl−1 can be computed using O(M(n) log(⌈n/d⌉+1)) oper-
ations in 𝔸, where n≔d l.

Proof. Without loss of generality, we may assume that l=2k for some integer k⩾0. We
compute g2,g4,...,g2k−1

withO(M(n)) operations in𝕂. In a recursivemannerwe compute
F0≔ f0+ f1 g+ ⋅ ⋅ ⋅ + fl/2−1 gl/2−1 and F1≔ fl/2+ fl/2+1 g+ ⋅ ⋅ ⋅ + fl−1 gl/2−1, and finally we
compute F0+ gl/2F1 with O(M(n)) operations in 𝔸. The rest of the complexity analysis
follows as in the proof of Lemma 3.16. □

Remark 3.18. When univariate polynomial multiplication is done using FFT techniques,
we note that it is possible to save a factor log log n in Lemmas 3.16 and 3.17; see [40].

PROPOSITION 3.19. Let d≔d1 ⋅ ⋅ ⋅ dt, and write n=d l. One evaluation of Πt modulo O(z𝜏) at
an element of degree <l in 𝜑t+1 (for the canonical representation), and one evaluation of Πt

−1

modulo O(z𝜏) at a polynomial of degree <n in x, both take O(M(n𝜏) log n) operations in 𝕂.

Proof. Let P∈𝕂[[z]][x] be of degree <n. Its Ψt-adic expansion takes O(M(n 𝜏) log l)
operations in𝕂 by Lemma 3.16. Then, we perform l=n/d calls to Πt−1 in degree <d. A
straightforward induction gives a total complexity bound

O(M(n𝜏) log l+ lM(d𝜏) log dt+ l dtM((d/dt)𝜏) log dt−1+ ⋅ ⋅ ⋅
+ l dt ⋅ ⋅ ⋅ d3M(d1d2𝜏) log d2)

= O(M(n𝜏) log n).

The backward conversion makes use of Lemma 3.17, and the complexity analysis is sim-
ilar. □
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PROPOSITION 3.20. Let d≔d1 ⋅⋅⋅dt, and let a and b be two contact polynomials inℙt of degree<l
in 𝜑t+1 and given with precision O(z𝜏). Then, the product a b can be computed modulo O(z𝜏)
with O(M(n𝜏) log n) operations in 𝕂, where n≔ l d.

Proof. The product is computed via the following formula:

ab=Πt
−1(Πt(a)Πt(b))+O(z𝜏).

By Proposition 3.19 the cost of the conversions amounts to O(M(n𝜏)log n). Multiplying
Πt(a) and Πt(b) modulo O(z𝜏) incurs O(M(n𝜏)). □

For actual machine computations, we only work with truncated power series. The
decision of whether it is more efficient to use contact representations or the plain repre-
sentations in 𝕂[[z]][x] depends on the truncation order. For sufficiently small orders,
the “carries” can be neglected, which makes it more efficient to conduct computations
directly in the contact representation. For large orders, and thus for asymptotic com-
plexity analyses, the overhead of the conversions using isomorphism (3.2) becomes
small, and it is more efficient to perform arithmetic operations in 𝕂[[z]][x]. Until the
end of the paper we performmost of the computations directly in𝕂[[z]][x], and thereby
minimize the number of conversions.

The isomorphism (3.2) also allows for efficient Euclidean divisions inℙt with respect
to 𝜑t+1, in the sense of Lemma 3.12. In fact, let a and b be as in the lemma, and compute
the division of Πt(a) by Πt(b):

Πt(a)=QΠt(b)+R,

where degR<deg(Πt(b))=d1 ⋅ ⋅ ⋅ dtn. The degree in 𝜑t+1 of the canonical representative
of Πt

−1(R) is therefore <n. It follows that Πt
−1(R) equals the remainder r= q0 of Defi-

nition 3.13. Since both a and b have finite degree in 𝜑t+1, we note that this also yields
an easier way to define the division in comparison to Lemma 3.12. In particular, the
assumption that val B=n𝛾t+1 is not needed.

PROPOSITION 3.21. Let d≔d1 ⋅⋅⋅dt, and let a and b be two contact polynomials inℙt of degree<l
in 𝜑t+1, and given with precision O(z𝜏). If b is monic in 𝜑t+1, then the division of a by b can be
computed modulo O(z𝜏) with O(M(n𝜏) log n) operations in 𝕂, where n≔ l d.

Proof. The division a=qb+ r is computed as above via

Πt(a)=Πt(q)Πt(b)+Πt(r).

By Proposition 3.19 the conversions takeO(M(n𝜏) logn). DividingΠt(a) byΠt(b)modulo
O(z𝜏) incurs O(M(n𝜏)). □

3.7. Semi-valuations in contact towers
Recall that Γt+1 represents the valuation semi-group of the contact tower

Γt+1≔ℕ+ℕ𝛾1+ ⋅ ⋅ ⋅ +ℕ𝛾t+1.

PROPOSITION 3.22. Let 𝜑̄i stand for the image of 𝜑i in 𝕊t. The valuation v:𝕂[[z]]→ℕ∪{∞}
extends to a semi-valuation 𝕊t→Γt+1∪{∞} with v(𝜑̄i)≔𝛾i for i=1, . . . , t+1, and such that 𝕊t
inherits the weighted grading of 𝕂[[z,𝜑1, . . . ,𝜑t+1]].
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Proof. For a∈𝕊t of canonical representative A, we set

v(a)≔valA.

We need to verify that v actually defines a semi-valuation in 𝕊t.
If b is another element of 𝕊t of canonical representative B, then it is straightforward to

verify that v(a+ b)⩾min(v(a),v(b)). As for the product, we compute the long division
by the standard basis thanks to Proposition 3.8:

AB=Q1(Φ1−𝜑2)+ ⋅ ⋅ ⋅ +Qt(Φt−𝜑t+1)+R,

where R is the canonical representative of a b, so v(a b)=val R. The latter long division
begins with setting P≔AB and then it successively subtracts polynomials of the form
G=cze0𝜑1

e1 ⋅ ⋅ ⋅ 𝜑t+1
et+1(Φi−𝜑i+1) from Pwhere i⩽ t, c∈𝕂, ei∈ℕ, and lmP=lmG. Since the

monomials in G have valuation ⩾val(lmG), it follows that

val(P−G)⩾min(val P, valG)=val P.

This shows that val R⩾val(AB). Since val(AB)=valA+val B, we deduce that v(a b)⩾
v(a)+v(b). □

We write valzA for the partial valuation in z of A∈𝕂[[z,𝜑1, . . . ,𝜑t+1]]. The valuation
in z of an element of ℙt will be the valuation in z of its canonical representative. In the
canonical representation, the degrees of the 𝜑i being bounded, the valuation in z of an
element inℙt can be related to v(a) in terms of the 𝛾i. The following boundswill be useful
when converting between the canonical and plain representations.

LEMMA 3.23. Let a∈𝕊t be of canonical representative A(𝜑1, . . . ,𝜑i) for some i⩽ t+1. Then we
have

valA−𝛾i (1+deg𝜑iA) = v(a)−𝛾i (1+deg𝜑iA) ⩽ valzA ⩽ v(a) = valA.

Proof. Assume a≠0. There exists a monomial of the form zvalzA𝜑1
e1 ⋅ ⋅ ⋅ 𝜑i

ei in A. Using
𝛾1⩾0 and 𝛾i+1>di𝛾i for i=1, . . . , t, we verify that

0 ⩽ v(a)−valzA ⩽ e1𝛾1+ ⋅ ⋅ ⋅ + ei𝛾i
⩽ (d1−1)𝛾1+(d2−1)𝛾2+ ⋅ ⋅ ⋅ +(di−1−1)𝛾i−1+𝛾ideg𝜑iA (3.3)

and then that

0 ⩽ v(a)−valzA ⩽ d1𝛾1+(d2−1)𝛾2+ ⋅ ⋅ ⋅ +(di−1−1)𝛾i−1+𝛾ideg𝜑iA
⩽ 𝛾2+(d2−1)𝛾2+ ⋅ ⋅ ⋅ +(di−1−1)𝛾i−1+𝛾ideg𝜑iA
= d2𝛾2+(d3−1)𝛾3+ ⋅ ⋅ ⋅ +(di−1−1)𝛾i−1+𝛾ideg𝜑iA
⩽ 𝛾3+(d3−1)𝛾3+ ⋅ ⋅ ⋅ +(di−1−1)𝛾i−1+𝛾ideg𝜑iA

. . .
⩽ 𝛾i+𝛾ideg𝜑iA. □

The following lemma asserts that Πt preserves the valuation in z.

LEMMA 3.24. For all a∈ℙt we have valz(Πt(a)) = valz a. For all A∈𝕂[[z]][x] we have
valz(Πt

−1(A))=valzA.
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Proof. For any element a∈ℙt, the inequality valz(Πt(a)) ⩾ valz a clearly holds. Con-
versely, for any A∈𝕂[[z]][x], we have valz(Πt

−1(A))⩾valzA. It follows that

valz(Πt(a))⩾valz a=valz(Πt
−1(Πt(a)))⩾valz(Πt(a)),

whence the first assertion. The second assertion is a consequence of the fact that Πt is a
𝕂[[z]]-isomorphism; see Lemma 3.15. □

The next lemma relates valuations and precisions of approximations of a and Πt(a).

LEMMA 3.25. Let 𝛼 and 𝜂>0 be rational numbers. For all a∈ℙt we have

[Πt(a)]𝛼;𝜂=[Πt([a]0;𝛼+𝜂+l𝛾t+1)]𝛼;𝜂, where l≔1+deg𝜑t+1 a.

For all A∈𝕂[[z]][x] we have

[Πt
−1(A)]𝛼;𝜂=[Πt

−1([A]0;𝛼+𝜂)]𝛼;𝜂.

Proof. Lemmas 3.23 and 3.24 give us

v(a)− l𝛾t+1⩽valz(Πt(a))⩽v(a). (3.4)

In particular, if v(a)⩾𝛼+𝜂+ l𝛾t+1 then valz(Πt(a))⩾𝛼+𝜂. As for the second assertion,
the inequalities (3.4) are equivalent to

valzA⩽v(Πt
−1(A))⩽valzA+ l𝛾t+1.

In particular, if valzA⩾𝛼+𝜂 then v(Πt
−1(A))⩾𝛼+𝜂. □

Remark 3.26. Lemma 3.25 can be refined into

[Πt(a)]𝛼;𝜂 = [Πt([a]𝛼;𝜂+l𝛾t+1)]𝛼;𝜂, where l≔1+deg𝜑t+1 a.
[Πt

−1(A)]𝛼;𝜂 = [Πt
−1([A]𝛼−l𝛾t+1;l𝛾t+1+𝜂)]𝛼;𝜂, where l≔1+deg𝜑t+1(Πt

−1(A)).

For simplicity we will not use this refinement in the sequel.

4. CONTACT HENSEL LIFTING

The usual Hensel lemma asserts that if a monic polynomial A∈𝕂[[z]][x] factors into
twomonic coprime polynomialsA1 andA2modulo z, then there exist uniquemonic poly-
nomials Â1 and Â2 in 𝕂[[z]][x] such that A= Â1 Â2, A1= Â1mod z, and A2= Â2mod z.
In addition, Â1 and Â2 can be obtained with a softly linear cost in the output size.

A variant of Hensel lifting is the Weierstraß preparation theorem, in which case A
andA2 are no longer monic, butA2 is invertible as a power series in x. We will generalize
these two kinds of lifting to the contact coordinate framework.

Throughout this section, a, a1, . . . ,as are elements inℙt, regarded informally as “poly-
nomials” in themain variable 𝜑t+1. Wewill assume that a=a1 ⋅⋅⋅as holds for a “sufficient”
initial precision, and that a1, . . . , as are “pairwise coprime”. We want to lift a1, . . . ,as into
â1, . . ., âs so that a= â1 ⋅ ⋅ ⋅ âs holds up to a required precision. The case when a is monic and

deg𝜑t+1 a=deg𝜑t+1(in(a))

corresponds to the multi-factor Hensel lifting. The case when s=2 and

deg𝜑t+1(in(a))<deg𝜑t+1 a
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is called the Weierstraß normalization of a.
Let A∈𝕂[[z]][𝜑1, . . . , 𝜑t+1] be the canonical representative of a. We recall that

deg𝜑t+1 a=deg𝜑t+1A, valz a=valzA, and in(a) is the image of in(A) inℙt. If b is a non-zero
element in ℙt that is monic in 𝜑t+1, then a rem b represents the remainder in the divi-
sion of a by b, as specified in Definition 3.13.

4.1. Normalized inverses
Let a be clustered (see Definition 3.9) at ℙt and of degree l⩾1 in 𝜑t+1. Given b∈ℙt with
deg𝜑t+1 b< l, its inverse modulo a, whenever it exists, belongs to z−𝛿ℙt for some 𝛿∈ℕ. In
order to determine a bound for 𝛿, consider u∈ℙt satisfying
• deg𝜑t+1 u< l,
• 𝛿≔v(u)+v(b) is an integer ⩾0,
• z𝛿=ub rem a.
Lemma 3.23 yields

valz u⩾v(u)− l𝛾t+1=𝛿−v(b)− l𝛾t+1.

If 𝛿>v(b)+ l𝛾t+1, then setting 𝛿≔⌈𝛿−v(b)− l𝛾t+1⌉ leads to

v(b)+ l𝛾t+1−1<𝛿−𝛿⩽v(b)+ l𝛾t+1.

So we may divide u by z𝛿 and subtract 𝛿 from 𝛿 in order to get a “simplified” modular
inverse u of b that satisfies

v(b)+ l𝛾t+1−1<𝛿⩽v(b)+ l𝛾t+1. (4.1)

If 𝛿⩽v(b)+ l𝛾t+1−1, so that 𝛿≔⌈𝛿−v(b)− l𝛾t+1⌉<0, then multiplication of u by z−𝛿 also
reduces to the case when (4.1) holds. In general, this shows that modular inverses can
always be normalized in the sense of the following definition:

DEFINITION 4.1. Let a be clustered at ℙt of degree l⩾1 in 𝜑t+1, and let b∈ℙt be of degree
<l in 𝜑t+1. A normalized inverse of b modulo a with relative precision 𝜂>0 is an element
u/z𝛿∈z−𝛿ℙt with u=[u]v(u);𝜂 such that:
• deg𝜑t+1 u< l,
• 𝛿≔v(u)+v(b) satisfies 𝛿=⌊v(b)+ l𝛾t+1⌋∈ℕ,
• z𝛿=[ub rem a]𝛿;𝜂.
If 𝜂=min(Γt+1∖{0}), then we say that u/z𝛿 is the normalized initial inverse of bmodulo a.

The existence and the computation of such inverses are postponed in section 7.1. The
next definition concerns the special case when b belongs to ℙt−1.

DEFINITION 4.2. Let b∈ℙt be of degree 0 in 𝜑t+1 (b is inℙt−1). A normalized initial inverse
of b is a homogeneous element u/z𝛿∈z−𝛿ℙt−1 such that:
• 𝛿≔v(u)+v(b) satisfies 𝛿=⌊v(b)+dt𝛾t⌋∈ℕ,
• z𝛿=[ub]𝛿.

LEMMA 4.3. If b∈ℙt−1 has a normalized initial inverse, then it is unique and v(cb)=v(c)+v(b)
holds for all c∈ℙt.
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Proof. We have v(cb)⩾v(c)+v(b). Definition 4.2 also yields

𝛿+v(c)=v(cbu)⩾v(cb)+v(u)=v(cb)+𝛿−v(b).

Concerning the uniqueness, if u′/z𝛿 represents a normalized initial inverse of b then

v((u−u′)b)>𝛿

and therefore v(u−u′)>𝛿−v(b), whence u=u′. □

LEMMA 4.4. If b has a normalized inverse modulo a with relative precision 𝜂>0, as in Defini-
tion 4.1, then it is unique and v((cb) rem a)=v(c rem a)+v(b) holds for all c∈ℙt.

Proof. We extend the contact towerwithΦt+1≔a and apply Lemma 4.3 in order to obtain
the equality for the valuation. As for the uniqueness let u′/z𝛿 represent another nor-
malized inverse modulo a. We have v((u−u′)b)⩾𝛿+𝜂 and thus v(u−u′)⩾𝛿+𝜂−v(b),
whence u=u′. □

4.2. Lifting modular inverses
We explain how to increase the relative precision of a normalized modular inverse, in
terms of the contact coordinates.

PROPOSITION 4.5. Let b,a,u∈ℙt, 𝛿∈ℕ and 𝜂>0, be such that
• a is clustered at ℙt of degree l⩾1 in 𝜑t+1,
• deg b< l,
• u/z𝛿 is a normalized inverse of b modulo a with relative precision 𝜂>0.
Then, there exists a unique normalized modular inverse û/z𝛿 of b with relative precision 2𝜂 such
that [û]v(u);𝜂=u. More precisely, with 𝛿≔v(u)+v(b) and

c≔u(z𝛿−ub) rem a,
we have valz c⩾𝛿 and

û=u+[c]v(u)+𝛿+𝜂;𝜂/z𝛿.

Proof. Let ũ represent an unknown in [ℙt]v(u)+𝜂;𝜂 with deg𝜑t+1 ũ< l, and which satisfies

[z𝛿− (u+ ũ)b rem a]𝛿;2𝜂=0. (4.2)

This equation is equivalent to

[z𝛿−ub rem a]𝛿+𝜂;𝜂=[ũ b rem a]𝛿+𝜂;𝜂,
and, by Lemma 4.4, to

[u(z𝛿−ub) rem a]v(u)+𝛿+𝜂;𝜂 = [ũ ub rem a]v(u)+𝛿+𝜂;𝜂

= [z𝛿 ũ rem a]v(u)+𝛿+𝜂;𝜂

= [z𝛿 ũ]v(u)+𝛿+𝜂;𝜂.

Hence
z𝛿 ũ=[c]v(u)+𝛿+𝜂;𝜂.

We have v(z𝛿−ub)⩾𝛿+𝜂, and therefore v(c)⩾v(u)+𝛿+𝜂. Lemma 3.23 implies that

valz c⩾v(u)+𝛿+𝜂− l𝛾t+1=𝛿−v(b)+𝛿+𝜂− l𝛾t+1>𝛿+𝜂−1,
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so c can actually be divided by z𝛿. We conclude that ũ= c/z𝛿 is the unique solution
of (4.2), whence û=u+ ũ fulfills all requirements. □

COROLLARY 4.6. Let a be clustered atℙt of degree l⩾1 in 𝜑t+1. If b∈ℙt admits an initial inverse
u/z𝛿 modulo a, then there exists a unique u∞∈ℙt such that in(u∞)=u and z𝛿=u∞b rem a.

Proof. Thanks to repeated applications of Proposition 4.5 we can construct the initial
inverse of bmodulo awith any finite relative precision. The existence of u∞ follows from
the completeness of ℙt. □

The next corollary addresses the precision loss of the initial inverse of b modulo a
when a and b are truncated modulo O(z𝜏).

COROLLARY 4.7. Let a be clustered atℙt of degree l⩾1 in 𝜑t+1. If b∈ℙt admits an initial inverse
u/z𝛿 modulo a, then u∞ (as defined in Corollary 4.6) can be computed modulo O(z𝜏−𝛿) from the
truncations of a and b modulo O(z𝜏), whenever 𝜏⩾𝛿.

Proof. Let
â≔Πt

−1([Πt(a)]0;𝜏), b̂≔Πt
−1([Πt(b)]0;𝜏)

represent the truncations of of a and b modulo O(z𝜏), and let 𝜂 be the smallest element
of Γt larger or equal to 𝜏 + v(a)− v(u)− 𝛿. Thanks to repeated applications of Proposi-
tion 4.5 we can compute the initial inverse û/z𝛿 of b̂modulo â with relative precision 𝜂.

Since 𝛿=⌊v(b)+ l𝛾t+1⌋=v(u)+v(b) and v(a)= l𝛾t+1, we have v(a)⩾v(u) and there-
fore 𝜂⩾0. From

[z𝛿− û b̂ rem â]𝛿;𝜂=0,
we deduce that

[z𝛿− û b rem a]𝛿;𝜂=0+O(z𝜏).

It follows that [(û−u∞)b rem a]𝛿;𝜂=0+O(z𝜏) and then that

[u∞(û−u∞)b rem a]𝛿+v(u);𝜂=0+O(z𝜏).

Using u∞b rem a=z𝛿, we obtain that

[(û−u∞)z𝛿]𝛿+v(u);𝜂=0+O(z𝜏),
hence

[û−u∞]v(u);𝜂=0+O(z𝜏−𝛿).
Lemma 3.23 implies that

valz(û−u∞)⩾min(v(u)+𝜂−v(a),𝜏−𝛿).

Thanks to the value taken for 𝜂 it follows that

valz(û−u∞)⩾min(𝜏+v(a)−v(u)−𝛿+v(u)−v(a),𝜏−𝛿)=𝜏−𝛿,

whence û=u∞+O(z𝜏−𝛿). □

4.3. Weierstraß normalization
We now turn to the Weierstraß normalization of an element a∈ℙt. The following defin-
ition gathers the necessary technical conditions and data structures.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 29



DEFINITION 4.8. Let a∈ℙt be of degree l⩾1 in 𝜑t+1. AWeierstraß context for a with relative
precision 𝜂>0 consists of elements a1,a2,u1 inℙt and 𝛿1∈ℕ that satisfy the following properties:
W1. a1 is clustered at ℙt of degree l1⩾1 in 𝜑t+1, a1=[a1]v(a1);𝜂,
W2. deg𝜑t+1(in(a2))=0, v(a)=v(a1)+v(a2), a2=[a2]v(a2);𝜂,
W3. [a−a1a2]v(a);𝜂=0,
W4. u1/z𝛿1 represents the normalized inverse of a2 with relative precision 𝜂.
If 𝜂=min(Γt∖{0}), then we say that a1,a2,u1, 𝛿1 is an initial Weierstraß context for a.

The Weierstraß lifting step summarizes as follows.

PROPOSITION 4.9. Let a∈ℙt be monic of degree l⩾1 in 𝜑t+1 and let a1,a2,u1, 𝛿1 denote a Weier-
straß context for a with relative precision 𝜂>0. Then, there exists a uniqueWeierstraß context â1,
â2, û1,𝛿1 for a with relative precision 2𝜂 such that [â1]v(a1);𝜂=a1, [â2]v(a2);𝜂=a2, and [û1]v(u1);𝜂=
u1. More precisely, with

b1≔u1a rem a1,
we have valz b1⩾𝛿1 and

â1 = a1+[b1]v(a1)+𝜂+𝛿1;𝜂/z𝛿1

â2 = [a quo â1]v(a2);2𝜂.

Letting
c1≔u1(z𝛿1−u1 â2) rem â1,

we also have valz c1⩾𝛿1 and
û1=u1+[c1]v(u1)+𝛿1+𝜂;𝜂/z𝛿1.

Proof. Consider the unknowns ã1∈[ℙt]v(a1)+𝜂;𝜂 and ã2∈[ℙt]v(a2)+𝜂;𝜂 such that deg𝜑t+1 ã1<
l1 and

[a]v(a);2𝜂=[(a1+ ã1)(a2+ ã2)]v(a);2𝜂=[a1a2+a1 ã2+ ã2a1]v(a);2𝜂.

It follows that
[a rem a1]v(a);2𝜂=[ã1a2 rem a1]v(a);2𝜂.

Lemma 4.4 and the constraints on valuations and precisions equivalently yield

[u1a rem a1]v(a)+v(u1)+𝜂;𝜂 = [u1a2 ã1 rem a1]v(a)+v(u1)+𝜂;𝜂

= [z𝛿1 ã1 rem a1]v(a)+𝛿1−v(a2)+𝜂;𝜂

= [z𝛿1 ã1]v(a)+𝛿1−v(a2)+𝜂;𝜂

= [z𝛿1 ã1]v(a1)+𝛿1+𝜂;𝜂,

whence
z𝛿1 ã1≔[u1a rem a1]v(a1)+𝛿1+𝜂;𝜂.

Then Lemma 3.23 gives

valz(u1a rem a1)⩾v(u1a rem a1)− l1𝛾t+1⩾v(a1)+𝛿1+𝜂−v(a1)=𝛿1+𝜂.

This shows that ã1 exists and is uniquely determined by

ã1≔[u1a rem a1]v(a1)+𝛿1+𝜂;𝜂/z𝛿1.

The formula for â2 is straightforward and the one for û1 follows from Proposition 4.5. □
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COROLLARY 4.10. Let a∈ℙt be monic of degree l⩾1 in 𝜑t+1 and let a1, a2, u1, 𝛿1 denote an
initial Weierstraß context for a. Then, there exist unique a1∞, a2∞∈ℙt such that [a1∞]v(a1)= a1,
[a2∞]v(a2)=a2, and a=a1∞a2∞. We call a1∞ (that is clustered at ℙt) the Weierstraß part of a.

Proof. This follows from Proposition 4.9 and the completeness of ℙt. □

COROLLARY 4.11. Let a∈ℙt be monic of degree l⩾1 in 𝜑t+1. If there exists an initial Weierstraß
context a1,a2,u1,𝛿1 for a, then a1∞ and a2∞ (as defined in Corollary 4.10) can be computed modulo
O(z𝜏−𝛿1) from the truncation of a modulo O(z𝜏).

Proof. We introduce the truncation â≔Πt
−1([Πt(a)]0,𝜏) of a modulo O(z𝜏), and set 𝜂

to the smallest element of Γt larger or equal to 𝜏− 𝛿1. The quadruple a1, a2, u1, 𝛿1 is an
initial Weierstraß context for â. From Proposition 4.9 we know that we can compute the
Weierstraß context â1, â2, û1, 𝛿1 for â with relative precision 𝜂, so that [â− â1 â2]v(a);𝜂=0
and

[a− â1 â2]v(a);𝜂=0+O(z𝜏).

According to Corollary 4.6 we may consider the modular inverse ũ1 of â2 modulo a1∞, so
that ũ1 â2 rem a1∞=z𝛿1. Hence

[ũ1a− â1 ũ1 â2]v(a)+v(u1);𝜂=0+O(z𝜏)
and

[z𝛿1 â1 rem a1∞]v(a)+v(u1);𝜂=0+O(z𝜏).
Lemma 3.23 implies that

valz(â1 rem a1∞) ⩾ min(v(a)+v(u1)−𝛿1+𝜂− l1𝛾t+1, 𝜏−𝛿1)
= min(v(a)+v(u1)− (v(u1)+v(a2))+𝜂− l1𝛾t+1, 𝜏−𝛿1)
= min(v(a)−v(a2)+𝜂−v(a1),𝜏−𝛿1)
= min(𝜂,𝜏−𝛿1)
= 𝜏−𝛿1.

Since â1 and a1∞ aremonic of the same degree in𝜑t+1wededuce that â1=a1∞+O(z𝜏−𝛿1). □

4.4. Weierstraß normalization via plain coordinates
The above formulas for the Weierstraß lifting can be applied directly in ℙt, but for the
sake of efficiency it is worth using plain coordinates. As a technical complication, con-
versions between contact and plain coordinates result in precision loss. Fortunately, this
loss is sufficiently small so that it has no serious impact on the complexity of our top-level
factorization algorithm. In the following algorithm, the input and output polynomials
use plain coordinates. However, the relative precision 𝜂, to be doubled during a lifting
step, refers to the contact coordinates.

Algorithm 4.1
Input. A contact tower of height t and degree d as above, a rational number 𝜂>0. A

monic polynomialA∈𝕂[[z]][x]moduloO(zv(a)+2𝜂), where a≔Πt
−1(A), and polyno-

mialsA1,A2,U1 in𝕂[[z]][x]moduloO(zv(a)+𝜂). The elements ai≔[Πt
−1(Ai)]v(Πt

−1(Ai));𝜂
for i=1,2, u1≔[Πt

−1(U1)]v(Πt
−1(U1));𝜂, and 𝛿1 form a Weierstraß context for a with rel-

ative precision 𝜂, as in Definition 4.8.
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Output. Â1, Â2, Û1 in 𝕂[[z]][x] modulo O(zv(a)+2𝜂), such that the elements âi ≔
[Πt

−1(Âi)]v(ai);2𝜂 for i=1, 2, û1≔[Πt
−1(Û1)]v(u1);2𝜂, and 𝛿1 form a Weierstraß context

for awith relative precision 2𝜂 such that [âi]v(ai);𝜂=[ai]v(ai);𝜂 for i=1,2 and [û1]v(u1);𝜂=
[u1]v(u1);𝜂.

1. Set 𝜏≔v(a)+2𝜂.
2. Compute B1≔U1A remA1 in𝕂[[z]]/(z𝜏+𝛿1)[x].
3. Compute Ã1≔B1/z𝛿i and Â1≔A1+ Ã1 in𝕂[[z]]/(z𝜏)[x].
4. Compute Â2≔A quo Â1 in𝕂[[z]]/(z𝜏)[x].
5. Compute C1≔U1(z𝛿1−U1 Â2) rem Â1 in𝕂[[z]]/(z𝜏+𝛿1)[x].
6. Compute Ũ1≔C1/z𝛿1 and Û1≔U1+ Ũ1 in𝕂[[z]]/(z𝜏)[x].
7. Return Â1, Â2, Û1.

PROPOSITION 4.12. Algorithm 4.1 is correct and takes
O(M(l d (v(a)+𝜂)))

operations in 𝕂, where l≔deg𝜑t+1 a.

Proof. The hypotheses of Proposition 4.9 are satisfied. We let

b1≔u1a rem a1=Πt
−1(B1).

Lemma 3.25 implies
[b1]0;𝜏+𝛿1=[Πt

−1([B1]0;𝜏+𝛿1)]0;𝜏+𝛿1.

We have seen in Proposition 4.9 that valz b1⩾𝛿1, whence valz B1⩾𝛿1 by Lemma 3.24.
Consequently Ã1 is well defined. With the notation of Proposition 4.9 we verify that

â1 = [a1+b1/z𝛿1]0;v(a1)+2𝜂

= [Πt
−1(Â1)]0;v(a1)+2𝜂

= [Πt
−1([Â1]0;v(a1)+2𝜂)]0;v(a1)+2𝜂

and

[Πt
−1([Â2]0;𝜏)]0;v(a2)+2𝜂 = [Πt

−1([A quo Â1]0;𝜏)]0;v(a2)+2𝜂

= [[a]0;𝜏 quo [â1]0;𝜏]0;v(a2)+2𝜂

= [â2]0;v(a2)+2𝜂.

By Proposition 4.9, properties W1, W2, and W3 of Definition 4.8 thus hold for â1, â2, and
relative precision 2𝜂.

In a similar fashion we verify that

[c1]0;𝜏+𝛿1=[Πt
−1(C1)]0;𝜏+𝛿1=[Πt

−1([C1]0;𝜏+𝛿1)]0;𝜏+𝛿1,
so we have

[û1]0;v(u1)+2𝜂=[u1+Πt
−1(Ũ1)]0;v(u1)+2𝜂=[u1+Πt

−1([Ũ1]0;𝜏)]0;v(u1)+2𝜂.

By Proposition 4.5, property W4 holds. We are done with the correctness. The cost
analysis is obtained routinely by using 𝛿1=⌊v(a2)+dt𝛾t⌋⩽⌊v(a)⌋. □

Applying successively Algorithm 4.1 several times enables us to lift any such initial
context to any requested precision. The cost is summarized in the following corollaries.
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COROLLARY 4.13. Let a∈ℙt be of degree l⩾1 in𝜑t+1 and let a1,a2,u1,𝛿1 be an initialWeierstraß
context for a. Then, given 𝜂>0, we may compute a Weierstraß context â1, â2, û1, 𝛿1 for a with
relative precision 𝜂 using

O(M(l d𝜏) log(l dRt+1v(a)))

operations in 𝕂, where 𝜏=v(a)+𝜂 and d=d1 ⋅ ⋅ ⋅ dt is the degree of the contact tower.

Proof. We convert the input data into the plain representation modulo O(z𝜏) using
Proposition 3.19, with O(M(l d𝜏) log(l d)) operations in𝕂.

We successively apply Algorithm 4.1 to increase the relative precision from 2k−1

Rt+1
to

2k

Rt+1
, for k= 1, . . . , ⌈log2(Rt+1 𝜂)⌉. By Proposition 4.12, the total cost of the lifting con-

tributes to

O((((((((((((((((((
((
(
( �

k=1

⌈log2(Rt+1𝜂)⌉

M((((((((((((((l d((((((((((((((v(a)+
2k

Rt+1))))))))))))))))))))))))))))))))))))))))))))))
))
)
)

= O((((((((((((((((((
((
(
( �

k=1

⌈log2(Rt+1v(a))⌉

M(l dv(a))+ �
k=⌈log2(Rt+1v(a))⌉+1

⌈log2(Rt+1𝜂)⌉

M((((((((((((((l d
2k

Rt+1))))))))))))))))))))))))))))))))
))
)
)

= O(M(l dv(a)) log(Rt+1v(a))+M(l d𝜂)).

At the end of the lifting, we convert the polynomials to contact coordinatesmoduloO(z𝜏)
via Proposition 3.19, again with O(M(l d𝜏) log(l d)) operations in𝕂. □

COROLLARY 4.14. Let a∈ℙt be of degree l⩾1 in 𝜑t+1 and let a1, a2, u1, 𝛿1 form an initial
Weierstraß context for a. Then, given a with precision O(z𝜏) with 𝜏>𝛿1, we can compute its
Weierstraß part a1∞ (as defined in Corollary 4.10) with precision O(z𝜏−𝛿1) using

O(M(l d𝜏) log(l dv(a)))

operations in 𝕂, where d=d1 ⋅ ⋅ ⋅ dt is the degree of the contact tower.

Proof. The truncation of a1∞ at precision O(z𝜏) does not depend on 𝛾t+1, as long as the
initial Weierstraß context properties are preserved. In particular we may set −𝛾t+1 to the
largest slope of a1∞ (which is −∞ if a1∞ is a power of 𝜑t+1), so we have −𝛾t+1∈

1
l1
Γt where

l1≔deg𝜑t+1 a1, whence
Rt+1⩽Rt l1⩽d l. (4.3)

We use Corollary 4.13 with relative precision 𝜂≔𝜏−𝛿1, as in the proof of Corollary 4.11.
The running time is

O(M(l d (v(a)+𝜂)) log(l dRt+1v(a)))

which yields the claimed bound thanks to inequality (4.3) and

v(a)+𝜂=v(a)+𝜏−𝛿1=v(a)+𝜏− ⌊v(a2)+dt𝛾t⌋⩽v(a)+𝜏− (v(a)−1)=𝜏+1. □

4.5. Hensel lifting step
We now turn to the lifting of a factorization of an element a∈ℙt, assuming that suitable
approximate modular inverses are known. The following definition gathers the neces-
sary technical conditions and data structures.
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DEFINITION 4.15. Let a be clustered at ℙt of degree l⩾1 in 𝜑t+1. A Hensel context for a with
relative precision 𝜂>0 consists of elements a1, . . . ,as,u1, . . . ,us in ℙt and integers 𝛿1, . . . , 𝛿s that
satisfy the following properties:
H1. For i=1, . . . , s, ai is clustered at ℙt of degree li⩾1, and has relative precision 𝜂,
H2. v(a)=v(a1)+ ⋅ ⋅ ⋅ +v(as), and l= l1+ ⋅ ⋅ ⋅ + ls,
H3. [a−a1 ⋅ ⋅ ⋅ as]v(a);𝜂=0,
H4. For i=1, . . . ,s, v(a

˘
i)=v(a

˘
i rem ai) and ui/z𝛿i is the normalized inverse of a

˘
i modulo ai with

relative precision 𝜂, where a
˘
i≔a1 ⋅ ⋅ ⋅ ai−1ai+1 ⋅ ⋅ ⋅ as.

If 𝜂=min(Γt∖{0}), then we say that a1, . . .,as,u1, . . . ,us, 𝛿1, . . . , 𝛿s is an initial Hensel context
for a.

Informally speaking, the assumption that a
˘
i admits a normalized initial inverse

modulo ai for i=1, . . . , s corresponds to the idea that a1, . . . , as are “initially coprime”.
We revisit the classical Chinese theorem in this context.

LEMMA 4.16. Given a Hensel context as in Definition 4.15, the following formula holds inℙt[z−1]:

1=[u1a
˘
1/z𝛿1+ ⋅ ⋅ ⋅ +usa

˘
s/z𝛿s]0;𝜂.

Proof. Let us write
c≔u1a

˘
1/z𝛿1+ ⋅ ⋅ ⋅ +usa

˘
s/z𝛿s∈ℙt[z−1].

By construction this yields

1=[uia
˘
i/z𝛿i rem ai]0;𝜂=[c rem ai]0;𝜂 (4.4)

for i=1, . . . , s. Assume by induction that there exists qi∈ℙt[z−1] such that

1=[c−qia1 ⋅ ⋅ ⋅ ai]0;𝜂. (4.5)

holds for some i⩾1, which is indeed the case for i=1 by (4.4). Combined with (4.4) for
i+1, there exists q̃i+1∈ℙt[z−1] such that

0=[qia1 ⋅ ⋅ ⋅ ai− q̃i+1ai+1]0;𝜂. (4.6)

Since a1 ⋅ ⋅ ⋅ ai is initially invertible modulo ai+1, Corollary 4.6 yields the existence of the
initial inverse vi/z𝜎i∈ℙt[z−1] of a1 ⋅ ⋅ ⋅ ai modulo ai+1, so there exists q̃i+1∈ℙt[z−1] such
that

1=via1 ⋅ ⋅ ⋅ ai/z𝜎i− q̃i+1 ai+1.

Combining the latter equality to (4.6) gives

0=[qi− (qi−vi/z𝜎i) q̃i+1ai+1]−v(a1⋅ ⋅ ⋅ai);𝜂,

thanks to Lemma 4.4 and H4. In this way, equality (4.5) holds for i+1 with qi+1≔(qi−
vi/z𝜎i) q̃i+1. At the end of the induction equality (4.5) holds for s, and since deg𝜑t+1 c<
deg𝜑t+1 a, we finally deduce that [qs]−v(a1⋅ ⋅ ⋅as);𝜂=0. □

Given a clustered at ℙt, we can increase (ℙ)i⩽t with Φt+1≔ a and 𝛾t+2≔∞. The con-
tact tower (ℙ)i⩽t+1 obtained in this way corresponds to the quotient ring ℙt/(a): in the
sequel ℙt/(a) is endowed with the semi-valuation induced by ℙt+1.
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PROPOSITION 4.17. Given a Hensel context as in Definition 4.15, the map

Ω: [ℙt/(a1 ⋅ ⋅ ⋅ as)]v(a);𝜂 ⟶ [ℙt/(a1)]v(a);𝜂× ⋅ ⋅ ⋅ ×[ℙt/(as)]v(a);𝜂
b ⟼ ([b rem a1]v(a);𝜂, . . . , [b rem as]v(a);𝜂)

is a 𝕂-linear isomorphism and we have Ω−1(c1, . . . , cs)≔[c]v(a);𝜂, where

c≔(u1c1/z𝛿1 rem a1)a
˘
1+ ⋅ ⋅ ⋅ +(us cs/z𝛿s rem as)a

˘
s.

Proof. It is clear from the assumptions that the map is well defined and 𝕂-linear. Let

(c1, . . . , cs)∈(ℙt/(a1))v(a);𝜂× ⋅ ⋅ ⋅ ×(ℙt/(as))v(a);𝜂.

From Lemma 4.4 we have

v(ui ci rem ai)=v(ui)+v(ci)⩾𝛿i−v(a
˘
i rem ai)+v(a)=𝛿i−v(a

˘
i)+v(a)=v(ai)+𝛿i,

so Lemma 3.23 implies
valz(ui ci rem ai)⩾𝛿i.

If follows that (ui ci rem ai)/z𝛿i belongs to ℙt and that v((ui ci/z𝛿i rem ai) a
˘
i)⩾ v(a). By

construction we have

Ω([c]v(a);𝜂)=([c1]v(a);𝜂, . . . , [cs]v(a);𝜂)=(c1, . . . , cs),

that proves that Ω is surjective.
Let b∈(ℙt/(a1 ⋅ ⋅ ⋅ as))v(a);𝜂 be in the kernel of Ω. There exists qi∈ℙt such that b=

[qiai]v(a);𝜂 for i=1, . . . , s. By Lemma 4.16 we deduce that

b=[u1a
˘
1q1a1/z𝛿1+ ⋅ ⋅ ⋅ +usa

˘
sqsas/z𝛿s]v(a);𝜂,

whence [b rem a]v(a);𝜂=0. Consequently Ω is injective. □

The Hensel lifting step goes as follows.

PROPOSITION 4.18. Let a be clustered atℙt of degree l⩾1 in 𝜑t+1. Let a1,...,as,u1,...,us,𝛿1,..., 𝛿s
represent a Hensel context for a with relative precision 𝜂>0. Then, there exists a unique Hensel
context â1, . . . , âs, û1, . . . , ûs, 𝛿1, . . . , 𝛿s for a with relative precision 2𝜂 such that [âi]v(ai);𝜂=ai and
[ûi]v(ui);𝜂=ui for i=1, . . . , s. More precisely, letting

bi≔uia rem ai,
for i=1, . . . , s, we have valz bi⩾𝛿i,

âi=ai+[bi]v(ai)+𝜂+𝛿i;𝜂/z𝛿i.
Letting e≔∑i=1

s ∏j=1, j≠i
s âj and

ci≔ui (z𝛿i−ui e) rem âi, for i=1, . . . , s,

we also have valz ci⩾𝛿i and
ûi=ui+[ci]v(ui)+𝛿i+𝜂;𝜂/z𝛿i.

Proof. For i=1,...,s, let us consider unknowns ãi in [ℙt]v(ai)+𝜂;𝜂 such that deg𝜑t+1 ãi< li and

[a]v(a);2𝜂=[(a1+ ã1) ⋅ ⋅ ⋅ (as+ ãs)]v(a);2𝜂.
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After expanding the right-hand side of the latter equation, we obtain equivalently that

[a−a1 ⋅ ⋅ ⋅ as]v(a)+𝜂;𝜂=[a
˘
1 ã1+ ⋅ ⋅ ⋅ +a

˘
s ãs]v(a)+𝜂;𝜂. (4.7)

By Proposition 4.17, equality (4.7) is in turn equivalent to

[a rem ai]v(a)+𝜂;𝜂=[(a
˘
i ãi) rem ai]v(a)+𝜂;𝜂 for i=1, . . . , s.

For i=1, . . . , s, Lemma 4.4 and the constraints on valuations and precisions then yield

[uia rem ai]v(a)+v(ui)+𝜂;𝜂 = [uia
˘
i ãi rem ai]v(a)+v(ui)+𝜂;𝜂

= [z𝛿i ãi rem ai]v(a)+𝛿i−v(a
˘
i)+𝜂;𝜂

= [z𝛿i ãi]v(a)+𝛿i−v(a
˘
i)+𝜂;𝜂

= [z𝛿i ãi]v(ai)+𝛿i+𝜂;𝜂,

whence
z𝛿i ãi≔[uia rem ai]v(ai)+𝛿i+𝜂;𝜂.

Then Lemma 3.23 gives

valz(uia rem ai)⩾v(uia rem ai)− li𝛾t+1⩾v(ai)+𝛿i+𝜂− li𝛾t+1=𝛿i+𝜂.

For i=1, . . . , s, this shows that ãi is uniquely determined by

ãi≔[uia rem ai]v(ai)+𝛿i+𝜂;𝜂/z𝛿i,

whence â1, . . . , âs satisfy the required properties. We finally remark that

e rem âi= â1 ⋅ ⋅ ⋅ âi−1 âi+1 ⋅ ⋅ ⋅ âs rem âi
for i=1, . . . , s, so the formulas for the ûi follow from Proposition 4.5. □

COROLLARY 4.19. Let a be clustered at ℙt of degree l⩾1 in 𝜑t+1 and let a1, . . . , as,u1, . . . ,us,
𝛿1, . . . , 𝛿s represent an initial Hensel context for a. Then, there exist unique a1∞, . . . ,as∞∈ℙt such
that [ai∞]v(ai)=ai, for i=1, . . . , s, and a=a1∞ ⋅ ⋅ ⋅ as∞.

Proof. This follows from a repeated use of Proposition 4.18 with increasing precision. □

COROLLARY 4.20. Let a be clustered at ℙt of degree l⩾1 in 𝜑t+1 and let a1, . . . , as,u1, . . . ,us,
𝛿1, . . . , 𝛿s represent an initial Hensel context for a. Then ai∞ (as defined in Corollary 4.19) can be
computed modulo O(z𝜏−𝛿i) for i=1, . . . , s from the truncation of a modulo O(z𝜏).

Proof. We introduce the truncation â≔Πt
−1([Πt(a)]0,𝜏) of a modulo O(z𝜏) and let 𝜂 be

the smallest element of Γt+1 larger or equal to 𝜏−mini=1, . . . ,s (𝛿i). By assumption, a1, . . . ,
as,u1, . . . ,us, 𝛿1, . . . , 𝛿s form an initial Hensel context for â. From Proposition 4.18 we know
that we can compute the Hensel context â1, . . . , âs, û1, . . . , ûs, 𝛿1, . . . , 𝛿s for â with relative
precision 𝜂, so that [â− â1 ⋅ ⋅ ⋅ âs]v(a);𝜂=0 and

[a− â1 ⋅ ⋅ ⋅ âs]v(a);𝜂=0+O(z𝜏).

Since ui/z𝛿i is the initial inverse of â1 ⋅⋅⋅ âi−1 âi+1 ⋅ ⋅⋅ âs modulo ai, Corollary 4.6 ensures the
existence of the modular inverse ũi of â1 ⋅ ⋅ ⋅ âi−1 âi+1 ⋅ ⋅ ⋅ âs modulo ai∞, which satisfies

ũi â1 ⋅ ⋅ ⋅ âi−1 âi+1 ⋅ ⋅ ⋅ âs rem ai∞=z𝛿i.
It follows that

[ũia− ũi â1 ⋅ ⋅ ⋅ âs]v(a)+v(ui);𝜂=0+O(z𝜏),
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whence
[z𝛿i âi rem ai∞]v(a)+v(ui);𝜂=0+O(z𝜏).

Lemma 3.23 implies that

valz(âi rem ai∞) ⩾ min(v(a)+v(ui)−𝛿i+𝜂− li𝛾t+1, 𝜏−𝛿i)
= min(v(a)+v(ui)− (v(ui)+v(a)−v(ai))+𝜂−v(ai),𝜏−𝛿i)
= min(𝜂,𝜏−𝛿i)
⩾ 𝜏−𝛿i.

Since âi and ai∞ are monic of the same degree in 𝜑t+1we deduce that âi=ai∞+O(z𝜏−𝛿i). □

4.6. Hensel lifting via plain coordinates
Hensel lifting is performed by the following algorithm that is dedicated to doubling the
relative precision of a Hensel context.

Algorithm 4.2
Input. A contact tower of height t and degree d as above, a rational number 𝜂>0. A

monic polynomialA∈𝕂[[z]][x]moduloO(zv(a)+2𝜂), where a≔Πt
−1(A), and polyno-

mials A1, . . .,As,U1, . . .,Us in𝕂[[z]][x]modulo O(zv(a)+𝜂). Integers 𝛿1, . . ., 𝛿s inℕ. The
elements ai≔Πt

−1(Ai), ui≔Πt
−1(Ui), and 𝛿i for i=1, . . . , s form a Hensel context for a

with relative precision 𝜂 as in Definition 4.15.
Output. Â1, . . . , Âs, Û1, . . . , Ûs in 𝕂[[z]][x] modulo O(zv(a)+2𝜂), such that the elements

âi≔Πt
−1(Âi), ûi≔Πt

−1(Ûi), and 𝛿i for i=1,...,s form aHensel context for awith relative
precision 2𝜂.

1. Set 𝜏≔v(a)+2𝜂, and 𝛿≔max(𝛿1, . . . , 𝛿s).
2. Compute Ri≔A remAi in𝕂[[z]]/�z𝜏+𝛿�[x], for i=1, . . . , s.
3. For i=1, . . . , s:

a. Compute Bi≔UiRi remAi in𝕂[[z]]/(z𝜏+𝛿i)[x],
b. Compute Ãi≔Bi/z𝛿i and Âi≔Ai+ Ãi in𝕂[[z]]/(z𝜏)[x].

4. Compute E≔∑i=1
s ∏j=1, j≠i

s Âj in𝕂[[z]]/�z𝜏+𝛿�[x].

5. Compute Si≔E rem Âi in𝕂[[z]]/�z𝜏+𝛿�[x] for i=1, . . . , s.
6. For i=1, . . . , s, compute Ci≔Ui (z𝛿i−UiSi) rem Âi in𝕂[[z]]/(z𝜏+𝛿i)[x].
7. For i=1, . . . , s, compute Ũi≔Ci/z𝛿i and Ûi≔Ui+ Ũi in𝕂[[z]]/(z𝜏)[x].
8. Return Â1, . . . , Âs, Û1, . . . , Ûs.

PROPOSITION 4.21. Algorithm 4.2 is correct and takes
O(M(l d (v(a)+𝜂)) log s)

operations in 𝕂, where l≔deg𝜑t+1 a.

Proof. The hypotheses of Proposition 4.18 are satisfied. We let

bi≔uia rem ai=Πt
−1(Bi).

Lemma 3.25 implies
[bi]0;𝜏+𝛿i=[Πt

−1([Bi]0;𝜏+𝛿i)]0;𝜏+𝛿i.
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We have seen in Proposition 4.18 that valz bi⩾𝛿i, whence valz Bi⩾𝛿i by Lemma 3.24.
Consequently Ãi is well defined for i=1, . . . , s. With the notation of Proposition 4.18 we
verify that

âi = [ai+bi/z𝛿i]0;v(ai)+2𝜂

= [Πt
−1(Âi)]0;v(ai)+2𝜂

= [Πt
−1([Âi]0;v(ai)+2𝜂)]0;v(ai)+2𝜂.

By Proposition 4.18, properties H1, H2, and H3 of Definition 4.15 thus hold for â1, . . . , âs
and relative precision 2𝜂.

In a similar fashion we verify that

[ci]0;𝜏+𝛿i=[Πt
−1(Ci)]0;𝜏+𝛿i=[Πt

−1([Ci]0;𝜏+𝛿i)]0;𝜏+𝛿i.

From Proposition 4.18 we know that z𝛿i divides ci, so it divides Ci. Consequently Ũi is
well defined for i=1, . . . , s, and we have

[ûi]0;v(ui)+2𝜂=[ui+Πt
−1(Ũi)]0;v(ui)+2𝜂=[ui+Πt

−1([Ũi]0;𝜏)]0;v(ui)+2𝜂.

By Proposition 4.5, property H4 holds. We are done with the correctness.
Concerning complexities, from Definition 4.2 we first observe that

𝛿i⩽v(a
˘
i)+𝛾t+1deg𝜑t+1 ai=v(a

˘
i)+v(ai)=v(a) and v(ui)⩽v(ai),

for i=1, . . . , s. Consequently steps 2, 4, and 5 take

O(M(l d (v(a)+𝜂)) log s)

operations in𝕂 using the sub-product tree technique; see [26, chapter 10, Theorems 10.6
and 10.10], for instance. The other steps require O(M(l d (v(a)+𝜂))) further operations
in𝕂. □

Applying successively Algorithm 4.2 several times enables us to lift an initial Hensel
context to any requested precision. The cost is summarized in the following corollary.

COROLLARY 4.22. Let a be clustered atℙt of degree l in 𝜑t+1, and let a1, . . .,as,u1, . . .,us, 𝛿1, . . ., 𝛿s
be an initial Hensel context for a. Then, given 𝜂>0 and 𝜏≔v(a)+𝜂, we may compute a Hensel
context â1, . . . , âs, û1, . . . , ûs, 𝛿1, . . . , 𝛿s for a with relative precision 𝜂 using

O(M(l d𝜏) log(l dRt+1v(a)) log s)

operations in 𝕂, where d=d1 ⋅ ⋅ ⋅ dt is the degree of the contact tower.

Proof. We convert the input data into the plain representation modulo O(z𝜏) using
Proposition 3.19, with O(M(l d𝜏) log(l d)) operations in𝕂.

We successively applyAlgorithm 4.2 to increase the relative precision from 2k−1

Rt+1
to 2k

Rt+1
,

for k=1, . . ., ⌈log2(Rt+1𝜂)⌉. By Proposition 4.21, the total cost of the lifting contributes to

O((((((((((((((((((
((
(
( �

k=1

⌈log2(Rt+1𝜂)⌉

M((((((((((((((l d((((((((((((((v(a)+
2k

Rt+1)))))))))))))))))))))))))))) log s))))))))))))))))))
))
)
)

= O((((((((((((((((((
((
(
( �

k=1

⌈log2(Rt+1v(a))⌉

M(l dv(a)) log s+ �
k=⌈log2(Rt+1v(a))⌉+1

⌈log2(Rt+1𝜂)⌉

M((((((((((((((l d
2k

Rt+1)))))))))))))) log s))))))))))))))))))
))
)
)

= O(M(l dv(a)) log(Rt+1v(a)) log s+M(l d𝜂) log s)
= O(M(l d𝜏) log(Rt+1v(a)) log s).
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At the end of the lifting, we convert the polynomials to contact coordinatesmoduloO(z𝜏)
using Proposition 3.19, again with O(M(l d𝜏) log(l d)) operations in𝕂. □

COROLLARY 4.23. Let a be clustered at ℙt of degree l in 𝜑t+1, and let a1, . . . ,as,u1, . . . ,us, 𝛿1, . . . ,
𝛿s be an initial Hensel context for a. Then, given a at precision O(z𝜏) we can compute ai∞ (as
defined in Corollary 4.20) at precision O(z𝜏−𝛿i) for i=1, . . .s, using

O(M(l d𝜏) log(l dv(a)) log s)

operations in 𝕂, where d=d1 ⋅ ⋅ ⋅ dt is the degree of the contact tower.

Proof. We use Corollary 4.22 with the relative precision 𝜂≔𝜏−mini=1, . . . ,s (𝛿i) as in the
proof of Corollary 4.20. The running time is

O(M(l d (v(a)+𝜂)) log(l dRt+1v(a)) log s).
Then we verify that

v(a)+𝜏−𝛿i=v(a)+𝜏− ⌊v(a
˘
i)+ li𝛾t+1⌋⩽v(a)+𝜏− (v(a)−1)=𝜏+1.

Using Rt+1⩽Rt l⩽ l d the cost of the lifting simplifies to O(M(l d𝜏) log(l dv(a)) log s). □

5. SEPARABLE TOWERS

In this section we introduce the notion of “separability” for contact towers. This will
allow the construction of derivations on contact towers, which will be the key ingredient
of the central shift algorithm in section 7.7.

5.1. Definition
Informally speaking, a contact tower is said to be separable when the initial forms of the
its defining polynomials Φi are separable. The precise definition is as follows.

DEFINITION 5.1. A tower (ℙi)i⩽t of contact coordinates as in Definition 3.1 is said to be sepa-
rable when ∂Φi

∂𝜑i
is initially invertible in ℙi, for i=1, . . . , s. It is said to be effectively separable

if the normalized initial inverses of the ∂Φi
∂𝜑i

are known for algorithmic purpose.

Throughout this section, we assume that (ℙi)i⩽t is effectively separable. For i=1,..., t,
Θi∈𝕂[z, 𝜑1, . . . , 𝜑i] represents the initial inverse of ∂Φi

∂𝜑i
modulo Φi. More precisely, we

assume thatΘi is homogeneous and satisfies in�Θi
∂Φi
∂𝜑i

�=z𝜅i, where 𝜅i∈ℕ. From Defin-
ition 4.1 we know that

0⩽𝜅i⩽(2di−1)𝛾i,
since val�∂Φi

∂𝜑i
�=(di−1)𝛾i.

Example 5.2. We define an effectively separable contact tower of height 1 by taking t=1,
Φ1=𝜑1

2−3, 𝛾1=0, 𝜅1=0, and Θ1=𝜑1/6. Indeed,

in((((((((((Θ1
∂Φ1
∂𝜑1

rem𝜑1Φ1))))))))))=in((((((((((((((𝜑1
2

3 rem𝜑1Φ1))))))))))))))=1,

where rem𝜑1 stands for remainder with respect to the variable 𝜑1.
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Example 5.3. Consider Example (2.6): Φ1=𝜑1
2− 3 and Φ2=𝜑2

2− 5 z2𝜑1 form a contact
tower of height t=2 with contact slopes 𝛾1= 0, 𝛾2=1. We get 𝛾1 and 𝛾2 from 2 𝛾1=
val(𝜑1

2)=val(−3)=0 and 2𝛾2=val(𝜑2
2)=val(5z2𝜑1)=2. As for the modular inverses we

may take 𝜅1=0, 𝜅2=2,
Θ1=

𝜑1
6 , and Θ2=

𝜑1𝜑2
30 .

Indeed, we verify that

in((((((((((Θ2
∂Φ2
∂𝜑2

rem𝜑2Φ2)))))))))) = in((((((((((((((𝜑1𝜑2
2

15 rem𝜑2Φ2))))))))))))))
= in((((((((((((𝜑1(5z2𝜑1+𝜑3)

15 rem𝜑2Φ2))))))))))))
= in(z2).

5.2. First derivatives
Since the mapΠt:ℙt→𝕂[[z]][x] is a𝕂[[z]]-isomorphism, from Lemma 3.15, the deriva-
tion d

dx on𝕂[[z]][x] induces a derivation onℙt (that is still denoted by d
dx for simplicity):

da
dx≔Πt

−1(((((((((( d
dx(Πt(a)))))))))))).

The separability assumption ensures that this derivation satisfies several convenient
properties.

LEMMA 5.4. Let (ℙi)i⩽t be a separable contact tower. For i=1, . . . , t we have

in((((((((((d𝜑i+1
dx ))))))))))=in((((((((((∂Φi

∂𝜑i

d𝜑i
dx ))))))))))

and
v((((((((((d𝜑i+1

dx ))))))))))=(di−1)𝛾i+(di−1−1)𝛾i−1+ ⋅ ⋅ ⋅ +(d1−1)𝛾1.

Proof. We prove the result by induction on i. For i=1 we have
d𝜑2
dx = ∂Φ1

∂𝜑1
and

v((((((((((d𝜑2
dx ))))))))))=val((((((((((∂Φ1

∂𝜑1 ))))))))))=(d1−1)𝛾1.
For i=2, . . . , t we have

d𝜑i+1
dx = ∂Φi

∂𝜑1
+ ∂Φi

∂𝜑2

d𝜑2
dx + ⋅ ⋅ ⋅ + ∂Φi

∂𝜑i

d𝜑i
dx .

By Lemma 4.3, the separability assumption yields

v((((((((((∂Φi
∂𝜑i

d𝜑i
dx )))))))))) = v((((((((((∂Φi

∂𝜑i ))))))))))+v((((((((((d𝜑i
dx )))))))))).

Combined with the induction hypothesis we deduce

v((((((((((∂Φi
∂𝜑i

d𝜑i
dx )))))))))) = (di−1)𝛾i+(di−1−1)𝛾i−1+ ⋅ ⋅ ⋅ +(d1−1)𝛾1.

On the other hand, for j< iwe have

v((((((((((((∂Φi
∂𝜑j

d𝜑j
dx ))))))))))))⩾di𝛾i−𝛾j+(dj−1−1)𝛾j−1+ ⋅ ⋅ ⋅ +(d1−1)𝛾1,
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and therefore

v((((((((((((∂Φi
∂𝜑j

d𝜑j
dx ))))))))))))−v((((((((((∂Φi

∂𝜑i

d𝜑i
dx ))))))))))

⩾ di𝛾i−𝛾j− (di−1)𝛾i− (di−1−1)𝛾i−1− ⋅ ⋅ ⋅− (dj−1)𝛾j
= 𝛾i− (di−1−1)𝛾i−1− ⋅ ⋅ ⋅− (dj−1)𝛾j−𝛾j
= (𝛾i−di−1𝛾i−1)+ ⋅ ⋅ ⋅ +(𝛾j+1−dj𝛾j)
> 0. □

5.3. Higher derivatives
We now study the effect of several consecutive differentiations in x.

LEMMA 5.5. Let (ℙi)i⩽t be a separable contact tower. For any c∈ℙt−1 we have

v((((((((((dcdx)))))))))) ⩾ v(c)+(dt−1𝛾t−1−𝛾t)+ ⋅ ⋅ ⋅ +(d1𝛾1−𝛾2)−𝛾1

= v(c)−𝛾t+v((((((((((d𝜑t
dx )))))))))).

Proof. The inequality follows from

dc
dx =�

i=1

t ∂c
∂𝜑i

d𝜑i
dx ,

Lemma 5.4, and the inequality

−𝛾i+(di−1−1)𝛾i−1+ ⋅ ⋅ ⋅ +(d1−1)𝛾1⩾−𝛾i+1+(di−1)𝛾i+ ⋅ ⋅ ⋅ +(d1−1)𝛾1
for i=1, . . . , t−1. □

LEMMA 5.6. Let (ℙi)i⩽t be a separable contact tower and let a∈ℙt+1 be such that

v(((((((((( ∂a
∂𝜑t+1))))))))))=v(a)−𝛾t+1.

Then we have
in((((((((((dadx))))))))))=in((((((((((d𝜑t+1

dx
∂a

∂𝜑t+1)))))))))).
Proof. Writing a= cl𝜑t+1

l + ⋅ ⋅ ⋅ + c0, we have

da
dx =

d𝜑t+1
dx

∂a
∂𝜑t+1

+�
j=0

l dcj
dx 𝜑t+1

j .

Then, for j=0, . . . , l, we have v(cj)⩾v(a)− j𝛾t+1 so Lemma 5.5 yields

v((((((((((dcjdx 𝜑t+1
j ))))))))))⩾v(a)−𝛾t+v((((((((((d𝜑t

dx )))))))))).
On the other hand,

v((((((((((d𝜑t+1
dx

∂a
∂𝜑t+1))))))))))=v(a)−𝛾t+1+v((((((((((d𝜑t+1

dx )))))))))), (5.1)

so Lemma 5.4 implies

v((((((((((dcjdx 𝜑t+1
j ))))))))))−v((((((((((d𝜑t+1

dx
∂a

∂𝜑t+1)))))))))) ⩾ 𝛾t+1−dt𝛾t > 0
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and
in((((((((((dadx))))))))))=in((((((((((d𝜑t+1

dx
∂a

∂𝜑t+1)))))))))). □

LEMMA 5.7. Let (ℙi)i⩽t be a separable contact tower. Given a∈ℙt and k⩾0 such that

v((((((((((((((
∂k a
∂𝜑t+1

k ))))))))))))))=v(a)−k𝛾t+1,
we have

in((((((((((((((
dk a
dxk))))))))))))))=in((((((((((((((((((((((((

d𝜑t+1
dx ))))))))))

k ∂k a
∂𝜑t+1

k )))))))))))))).
Proof. First note that

v(((((((((((((((((
∂ j a

∂𝜑t+1
j )))))))))))))))))=v(a)− j𝛾t+1

holds for all j⩽k. We prove the lemma by induction on k. The result is clear for k=0, so
assume that k⩾1. The induction hypothesis implies that

dk−1 a
dxk−1 =((((((((((d𝜑t+1

dx ))))))))))
k−1 ∂k−1 a

∂𝜑t+1
k−1 +R (5.2)

for some R such that

v(R)>v((((((((((((((
dk−1 a
dxk−1)))))))))))))).

Differentiating (5.2) with respect to 𝜑t+1 yields

∂
∂𝜑t+1

dk−1 a
dxk−1 =

∂
∂𝜑t+1((((((((((

d𝜑t+1
dx ))))))))))

k−1 ∂k−1 a
∂𝜑t+1

k−1 +((((((((((d𝜑t+1
dx ))))))))))

k−1 ∂k a
∂𝜑t+1

k + ∂R
∂𝜑t+1

. (5.3)

Since in�d𝜑t+1
dx � does not depend on 𝜑t+1, the initial form of �d𝜑t+1

dx �k−1 also does not
depend on 𝜑t+1. It follows that

v(((((((((( ∂
∂𝜑t+1((((((((((

d𝜑t+1
dx ))))))))))

k−1

))))))))))>v((((((((((((((((((((d𝜑t+1
dx ))))))))))

k−1

))))))))))−𝛾t+1,
whence

v((((((((((((((
∂

∂𝜑t+1((((((((((
d𝜑t+1
dx ))))))))))

k−1 ∂k−1 a
∂𝜑t+1

k−1))))))))))))))>v((((((((((((((((((((((((
d𝜑t+1
dx ))))))))))

k−1 ∂k a
∂𝜑t+1

k )))))))))))))). (5.4)

Equation (5.2), the assumption on a, and the definition of R imply that

v(((((((((( ∂R
∂𝜑t+1))))))))))⩾v(R)−𝛾t+1>v((((((((((((((

dk−1 a
dxk−1))))))))))))))−𝛾t+1=v((((((((((((((((((((((((

d𝜑t+1
dx ))))))))))

k−1 ∂k a
∂𝜑t+1

k )))))))))))))). (5.5)

By combining (5.3), (5.4), and (5.5) we deduce

in((((((((((((((
∂

∂𝜑t+1

dk−1 a
dxk−1))))))))))))))=in((((((((((((((((((((((((

d𝜑t+1
dx ))))))))))

k−1 ∂k a
∂𝜑t+1

k )))))))))))))). (5.6)

On the other hand Lemma 5.6 gives us

in((((((((((((((d
k a

dxk))))))))))))))=in((((((((((((((
d𝜑t+1
dx

∂
∂𝜑t+1

dk−1 a
dxk−1)))))))))))))). (5.7)

We conclude the proof by combining equations (5.6) and (5.7). □
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6. INITIAL EXPANSIONS

Canonical representations are not always the most efficient ones for computations with
initial forms. This can be already observed in the case when t=1. Indeed, let us write

in(Φ1)=𝜑1
d1+ cd1−1zed1−1𝜑1

d1−1+ ⋅ ⋅ ⋅ + c0ze0,

with ci∈𝕂 and ei∈ℕ for i=0, . . . ,d1−1. Let f1 and r1⩾1 be coprime integers such that

𝛾1=
f1
r1

= e0
d1
.

Then, the coefficient cj is zero whenever j is not a multiple of r1. This shows that in(Φ1)
is sparse in the sense that it contains at most s1≔ d1/r1 non-zero terms besides 𝜑1

d1. In
particular, computations that use the dense representation are deemed to be suboptimal.

Assume for instance that we need to compute the valuation and the initial inverse
of a∈ℙ1. We first extract the initial part of its canonical representative A; there exist
k∈{0, . . . , r1−1} and a0, . . . ,as1−1∈𝕂 such that

in(A)=as1−1z
𝜎−(s1−1) f1−k f1

r1 𝜑1
(s1−1)r1+k+ ⋅ ⋅ ⋅ +a0z

𝜎−k f1
r1 𝜑1

k,

where 𝜎≔valA. Note that in(A) is again sparse. We now have to compute the Bézout
relation of the specializations at z=1 of in(A) and in(Φ1) in 𝕂[𝜑1]. Without exploiting
the sparsity, this computation takes O(M(d1) log d1) operations in 𝕂. In this particular
case, the remedy is to compute with respect to 𝜑1

r1 instead of 𝜑1, while exploiting the fact
that in(A)𝜑1

−k and in(Φ1) are dense polynomials in 𝜑1
r1.

In order to generalize this remedy to the case when t>1, we show in this section how
to rewrite sparse homogeneous polynomials in 𝕂[[z]][𝜑1, . . . ,𝜑t] into suitable products
of coefficients in “algebraic towers” (𝔸i)i⩽t over𝕂 and “monomials”.

In all computations below, (ℙi)i⩽t will be an effectively separable contact tower (as
in Definition 5.1) that satisfies the following additional property.

DEFINITION 6.1. With the notation of Definition 3.1, a contact tower of height t is said to be
regular when Φi(𝜑1, . . . ,𝜑i−1, 0) has valuation di𝛾i and is initially invertible, for i=1, . . . , s. It
is said to be effectively regular if the normalized initial inverse of Φi(𝜑1, . . . ,𝜑i−1, 0) is known
for algorithm purpose, for i=1, . . . , s.

This regularity assumption implies that 𝛾i is determined by

𝛾i=
1
di
val(Φi(𝜑1, . . . ,𝜑i−1, 0)).

6.1. Definition
An algebraic tower over 𝕂 is a sequence (𝔸i)i⩽t with 𝔸0≔𝕂 and 𝔸i≔𝔸i−1[xi]/(𝜇i(xi)),
for i=1,..., t andmonic polynomials 𝜇i(xi)∈𝔸i−1[xi]. We will write 𝛼i for the image of xi
in𝔸i and set si≔deg𝜇i for i=1,. . ., t. The tower is said to be effectively separablewhen we
are given u and v in 𝔸i−1[xi] of respective degree <deg 𝜇i and <deg 𝜇i−1 such that the
Bézout relation

1=u𝜇i′+v𝜇i

holds, for i=1,.. ., t. The next definition concerns the alternative representation of homo-
geneous polynomials modulo (in(Φ1), . . . , in(Φt)).
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DEFINITION 6.2. An initial expansion consists of the following data:
• An effectively separable tower

𝔸0≔𝕂 and 𝔸i≔𝔸i−1[xi]/(𝜇i(xi)), for i=1, . . . , t,

where 𝜇i is monic of degree si>0 in𝔸i−1[xi]. The class of xi in𝔸i is written 𝛼i. For i=1,..., t
the inverse of 𝛼i exists and is known.

• A tower of purely ramified extensions of 𝔹0≔𝕂[[z]], written

𝔹i≔𝔸i[y1, . . . ,yi]/�y1r1−b0𝛼1z f1,0, . . . ,yiri−bi−1𝛼iz fi,0y1
fi,1 ⋅ ⋅ ⋅ yi−1

fi,i−1�,

where r1, . . . , rt are positive integers called ramification indices,

( fi,0, . . . , fi,i−1)∈ℕ×{0, . . . , r1−1}× ⋅ ⋅ ⋅ ×{0, . . . , ri−1−1},

for i=1, . . . , t, and bj is invertible in 𝔸j for j=0, . . . , t−1. The class of yi in 𝔹i is written 𝛽i.
• 𝜌i∈𝔸i and a uniformizing parameter 𝜋i∈𝔹i such that 𝜋i

Ri=𝜌i z, where Ri≔ r1 ⋅ ⋅ ⋅ ri, for
i=1, . . . , t.

• fi∈ℕ> coprime with ri along with integers ui and vi such that𝜋i
fi=𝛼i−ui𝛽i and uiri+vi fi=1,

for i=1, . . . , t.

6.2. Initial expansions for towers of height t=1
The construction of an initial expansion associated to a contact tower is achieved by
induction on t. This subsection is devoted to the case when t=1. As in the introduc-
tion of this section, we write

in(Φ1)=𝜑1
d1+ cd1−1zed1−1𝜑1

d1−1+ ⋅ ⋅ ⋅ + c0ze0,

with ci∈𝕂 and ei∈ℕ for i=0,. . .,d1−1. Note that c0≠0 because the tower is regular. As
before, we let f1 and r1⩾1 be coprime integers such that

𝛾1=
e0
d1

= f1
r1
.

We define
𝜇1(x1)≔x1

s1+ cd1−r1x1
s1−1+ ⋅ ⋅ ⋅ + cr1x1+ c0,

where s1≔d1/r1. Note that cj=0 whenever j is not a multiple of r1. The inverse of 𝛼1 is:

𝛼1−1=((((((((((𝜇1(x1)−𝜇1(0)
−𝜇1(0)x1 ))))))))))(𝛼1).

With f1,0≔ f1 and b0≔1, the map

Τ1: 𝕂((z))[𝜑1]/(in(I1)) ≅ 𝔹1[z−1]
𝜑1 ⟼ 𝛽1,

is well defined because

(in(Φ1))(𝛽1) = 𝛽1
d1+ cd1−r1z

f1𝛽1
d1−r1+ ⋅ ⋅ ⋅ + c0zd1 f1/r1

= (𝛽1
r1)s1+ cd1−r1z

f1(𝛽1
r1)s1−1+ ⋅ ⋅ ⋅ + c0z f1s1

= �𝛼1z f1�s1+ cd1−r1z
f1�𝛼1z f1�s1−1+ ⋅ ⋅ ⋅ + c0z f1s1

= 𝜇1(𝛼1)z f1s1

= 0.
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Let us now show how to compute conversions via Τ1. Let A∈𝕂[z][𝜑1]<d1 be homoge-
neous of valuation 𝜎 and write

A=as1−1z
𝜎−(s1−1) f1−k f1

r1 𝜑1
(s1−1)r1+k+ ⋅ ⋅ ⋅ +a0z

𝜎−k f1
r1 𝜑1

k

with k∈{0, . . . , r1−1}. Then the formula

Τ1(A)=z
𝜎−k f1

r1 𝛽1
k�as1−1𝛼1s1−1+ ⋅ ⋅ ⋅ +a1𝛼1+a0�

allows for the computation of Τ1(A)without any arithmetic operations or zero tests. This
also shows that Τ1 is an isomorphism.

Assume that two elements z𝜀0𝛽1
𝜀1 and z𝜀0′ 𝛽1

𝜀1′ in 𝔹1[z−1] with 0⩽𝜀1′ ⩽𝜀1< r1 have the
same valuation, that is

𝜀0+𝜀1
f1
r1

=𝜀0′ +𝜀1′
f1
r1
.

If f1=0 (that corresponds to e0=0), then r1=1 so 𝜀1=𝜀1′=0 and therefore 𝜀0=𝜀0′. Other-
wise we have

(𝜀1′−𝜀1) f1=(𝜀0−𝜀0′) r1,

and r1 and f1 are coprime. So r1 divides 𝜀1′−𝜀1, whence 𝜀1′=𝜀1 and 𝜀0′=𝜀0. In other words,
any homogeneous element in 𝔹1[[z−1]] can be written in a unique way as c z𝜀0𝛽1

𝜀1 with
c∈𝔸1, 𝜀0∈ℤ, and 0⩽𝜀1< r1.

Now consider the Bézout relation u1r1+v1 f1=1 between r1 and f1, with |u1|< f1 and
|v1|< r1. The element

𝜋1≔zu1𝛽1
v1∈𝔹1[z−1]

has valuation 1/r1. From

𝜋1
r1=zu1r1𝛽1

v1r1=z1−v1 f1𝛽1
v1r1=z1−v1 f1(𝛼1z f1)v1=𝛼1v1z

and

𝜋1
f1=zu1 f1𝛽1

v1 f1=zu1 f1𝛽1
1−u1r1=zu1 f1𝛽1(𝛼1z f1)−u1=𝛼1−u1𝛽1,

we obtain formulas to rewrite z and 𝛽1 in terms of 𝜋1:

z=𝛼1−v1𝜋1
r1, 𝛽1=𝛼1u1𝜋1

f1.

Consequently 𝜋1 is a uniformizing parameter of 𝔹1[z−1], whose valuation group is

Γ̄1=
1
r1

ℤ,

and 𝜌1≔𝛼1u1. In particular, 𝔹1 is a purely ramified extension of 𝔹0. It remains to make
(𝔸i)i⩽1 effectively separable. To this end, we first compute

Τ1((((((((((in((((((((((∂Φ1
∂𝜑1 )))))))))))))))))))) = Τ1(((((((((( ∂

∂𝜑1
�𝜑1

r1s1+ cd1−r1z
f1𝜑1

r1(s1−1)+ ⋅ ⋅ ⋅ + c0z f1s1�))))))))))
= Τ1��s1𝜑1

r1(s1−1)+(s1−1) cd1−r1z
f1𝜑1

r1(s1−2)+ ⋅ ⋅ ⋅ + cr1z
f1(s1−1)� r1𝜑1

r1−1�
= �s1𝛼1s1−1z f1(s1−1)+(s1−1) cd1−r1𝛼1

s1−2z f1(s1−1)+ ⋅ ⋅ ⋅ + cr1z
f1(s1−1)� r1𝛽1

r1−1

= r1𝜇1′ (𝛼1)z f1(s1−1)𝛽1
r1−1.
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LetΘ1 and 𝜅1 be such that in�Θ1
∂Φ1
∂𝜑1

�=z𝜅1 and let 𝜃1(𝛼1)z𝜀0𝛽1
𝜀1≔Τ1(in(Θ1)) be such that

0⩽𝜀1⩽ r1−1. Then we have

z𝜅1 = 𝜃1(𝛼1)z𝜀0𝛽1
𝜀1 r1𝜇1′ (𝛼1)z f1(s1−1)𝛽1

r1−1

= r1𝜃1(𝛼1)𝜇1′ (𝛼1)z𝜀0+ f1(s1−1)𝛽1
𝜀1+r1−1.

Necessarily 𝜀1=1 and r1 𝛼1 𝜃1(𝛼1) is the inverse of 𝜇1′ (𝛼1). From this inverse we easily
recover the Bézout relation of 𝜇1′ and 𝜇1, that makes the tower (𝔸i)i⩽1 effectively sepa-
rable.

6.3. Initial expansions for towers of height t⩾2
The next lemma deals with the construction of an initial expansion associated to a contact
tower. We extend the above construction for t=1.

LEMMA 6.3. Given an effectively separable and regular contact tower (ℙi)i⩽t, there exists an
initial expansion such that each ri divides di, and

Τi: 𝕂((z))[𝜑1, . . . ,𝜑i]/(in(Ii)) ≅ 𝔹i[z−1] (6.1)
𝜑j ⟼ 𝛽j for j=1, . . . , i,

is a𝕂((z))-algebra isomorphism, for i=1,.. ., t. We set si≔di/ri. In addition, with Ri≔ r1 ⋅ ⋅ ⋅ ri,
𝔹i[z−1] has valuation group

Γ̄i=
1
Ri

ℤ.

The algebra 𝔹i[z−1] inherits the grading of 𝕂((z))[𝜑1, . . . , 𝜑i]. We still write v for the semi-
valuation induced over 𝔹i[z−1], so v(z)= 1 and v(𝛽i)=𝛾i for i=1, . . . , t. Any homogeneous
element of 𝔹i[z−1] can uniquely be written as cz𝜀0𝛽1

𝜀1 ⋅ ⋅ ⋅ 𝛽i
𝜀i, where c∈𝔸i and

(𝜀0, . . . , 𝜀i)∈ℤ×{0, . . . , r1−1}× ⋅ ⋅ ⋅ ×{0, . . . , ri−1}.

Proof. We prove the lemma by induction on t. The case t= 1 has been addressed in
the previous subsection, so we assume that t⩾2 and recall that 𝜋t−1 is a uniformizing
parameter of 𝔹t−1[z−1]. We write

in(Φt)=𝜑t
dt+Cdt−1𝜑t

dt−1+ ⋅ ⋅ ⋅ +C0,

where Cj∈𝕂[z][𝜑1, . . . ,𝜑t−1] is homogeneous for j=0, . . . ,dt−1. Then we define

cj𝜋t−1
ej ≔Τt−1(Cj),

where cj∈𝔸t−1 and ej∈ℕ, for j=0, . . . ,dt−1. We introduce

st≔gcd(dt, e0), rt≔
dt
st
, ft≔

e0
st
,

so we have

𝛾t=
e0

dtRt−1
= ft
rtRt−1

. (6.2)

Since the tower is regular, c0 is invertible. Since in(Φt) is homogeneous, we have cj=0
whenever j is not a multiple of rt and

edt− jrt+(dt− j rt)
ft
rt
=dt

ft
rt
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for j=1, . . . , st. The latter equation is equivalent to

edt− jrt= j ft.
We define 𝜇t as

𝜇t(xt)≔xtst+ cdt−rtxt
st−1+ ⋅ ⋅ ⋅ + crtxt+ c0

and
𝛽t
rt=𝛼t𝜋t−1

ft . (6.3)
The inverse of 𝛼t is then given by

𝛼t−1=((((((((((𝜇t(xt)−𝜇t(0)
−𝜇t(0)xt ))))))))))(𝛼t). (6.4)

From the induction hypothesis, 𝜋t−1
ft can uniquely be rewritten as

𝜋t−1
ft =bt−1z ft,0𝛽1

ft,1 ⋅ ⋅ ⋅ 𝛽t−1
ft,t−1,

where bt−1 is invertible in𝔸t−1 and ( ft,0, . . ., ft,t−1)∈ℤ×{0,. . .,r1−1}× ⋅⋅⋅ ×{0,. . .,rt−1−1}.
We also have

v(𝛽t
rt)= rtv(𝛽t)= rt𝛾t> rtdt−1𝛾t−1,

so Lemma 3.23 further yields

ft,0=valz�z ft,0𝜑1
ft,1 ⋅ ⋅ ⋅ 𝜑t−1

ft,t−1� ⩾ v(𝛽t
rt)− rt−1𝛾t−1

⩾ rtdt−1𝛾t−1− rt−1𝛾t−1

⩾ 0.

Inside 𝔹t, the following equalities hold:

𝛽t
dt+ cdt−rt𝜋t−1

ft 𝛽t
dt−rt+ ⋅ ⋅ ⋅ + c0𝜋t−1

stft = (𝛽t
rt)st+ cdt−rt𝜋t−1

ft (𝛽t
rt)st−1+ ⋅ ⋅ ⋅ + c0𝜋t−1

stft

= �𝛼t𝜋t−1
ft �st+ cdt−rt𝜋t−1

ft �𝛼t𝜋t−1
ft �st−1+ ⋅ ⋅ ⋅ + c0𝜋t−1

stft

= 𝜇t(𝛼t)𝜋t−1
stft

= 0,

which shows that Τt is well defined.
Let A∈𝕂[z][𝜑1, . . . , 𝜑t] be homogeneous of valuation 𝜎, such that deg𝜑i A< di for

i=1, . . . , t, and let us write it in the form

A=Ast−1𝜑t
(st−1)rt+k+ ⋅ ⋅ ⋅ +A1𝜑t

rt+k+A0𝜑t
k,

with Aj homogeneous in𝕂[z][𝜑1, . . . ,𝜑t−1] and k∈{0, . . . , rt−1}. Then

Τt(A) = Τt−1(Ast−1)𝛽t
(st−1)rt+k+ ⋅ ⋅ ⋅ +Τt−1(A1)𝛽t

rt+k+Τt−1(A0)𝛽t
k

= �Τt−1(Ast−1)�𝛼t𝜋t−1
ft �st−1+ ⋅ ⋅ ⋅ +Τt−1(A1)𝛼t𝜋t−1

ft +Τt−1(A0)�𝛽t
k

shows that it is straightforward to compute Τt recursively, and that Tt is a𝕂((z))-algebra
isomorphism; an explicit recursive formula for Tt−1 will be given in the proof of Proposi-
tion 6.4 below.

Now assume that two elements 𝜋t−1
𝜀t−1𝛽t

𝜀t and 𝜋t−1
𝜀t−1′ 𝛽t

𝜀t′, with 0⩽ 𝜀t⩽𝜀t′ < rt, have the
same valuation, that is

𝜀t−1
r1 ⋅ ⋅ ⋅ rt−1

+𝜀t
ft

r1 ⋅ ⋅ ⋅ rt
= 𝜀t−1′
r1 ⋅ ⋅ ⋅ rt−1

+𝜀t′
ft

r1 ⋅ ⋅ ⋅ rt
,
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or, equivalently
(𝜀t′−𝜀t) ft=(𝜀t−1−𝜀t−1′ ) rt.

Since t⩾2, from Definition 3.1, ft≠0, and since rt and ft are coprime, rt divides 𝜀t′− 𝜀t,
whence 𝜀t′=𝜀t and 𝜀t−1′ =𝜀t−1. In other words, any homogeneous element in 𝔹t[z−1] can
be uniquely written b𝜋t−1

𝜀t−1𝛽t
𝜀t with b∈𝔸t−1, 𝜀t−1∈ℤ and 0⩽𝜀t< rt.

Let
1=ut rt+vt ft

be the Bézout relation of rt and ft, with |ut|< ft and |vt|< rt. The element

𝜋t≔𝜋t−1
ut 𝛽t

vt∈𝔹t[z−1]
has valuation

ut
r1 ⋅ ⋅ ⋅ rt−1

+ vt ft
r1 ⋅ ⋅ ⋅ rt

= ut rt+vt ft
r1 ⋅ ⋅ ⋅ rt

= 1
r1 ⋅ ⋅ ⋅ rt

.

On the other hand we verify that

𝜋t
rt=𝜋t−1

utrt𝛽t
vtrt=𝜋t−1

1−vtft�𝛼t𝜋t−1
ft+1�vt+1=𝛼tvt𝜋t−1 (6.5)

and
𝜋t

ft=𝜋t−1
utft 𝛽t

vtft=𝜋t−1
utft 𝛽t

1−utrt=𝜋t−1
utft �𝛼t𝜋t−1

ft �−ut𝛽t = 𝛼t−ut𝛽t. (6.6)

Consequently, the valuation group of 𝔹t[z−1] is

Γ̄t=
1

r1 ⋅ ⋅ ⋅ rt
ℤ,

and 𝜋t is a uniformizing parameter. In addition we have

𝜋t
Rt=(𝛼tvt𝜋t−1)Rt−1=𝛼tvtRt−1𝜌t−1z,

whence
𝜌t=𝛼tvtRt−1𝜌t−1. (6.7)

In order to show that (𝔸i)i⩽t is separable, we verify that

Τt((((((((((in((((((((((∂Φt
∂𝜑t )))))))))))))))))))) = Τt(((((((((( ∂

∂𝜑t
�𝜑t

rtst+ cdt−rt𝜋t−1
ft 𝜑t

rt(st−1)+ ⋅ ⋅ ⋅ + c0zdtft/rt�))))))))))
= Τt��st𝜑t

rt(st−1)+(st−1) cdt−rt𝜋t−1
ft 𝜑t

rt(st−2)+ ⋅ ⋅ ⋅ + crt z
ft(st−1)� rt𝜑t

rt−1�
= �st𝛼tst−1𝜋t−1

ft(st−1)+(st−1) cdt−rt𝛼t
st−2𝜋t−1

ft(st−1)+ ⋅ ⋅ ⋅ + crt𝜋t−1
ft(st−1)� rt𝛽t

rt−1

= rt𝜇t′(𝛼t)𝜋t−1
ft(st−1)𝛽t

rt−1.

LetΘt and 𝜅t be such that in�Θt
∂Φt
∂𝜑t

�=z𝜅t and let 𝜃t(𝛼t)𝜋t−1
𝜀t−1𝛽t

𝜀t≔Τt(in(Θt)) be such that
0⩽𝜀t< rt. Then we have

z𝜅t = 𝜃t(𝛼t)𝜋t−1
𝜀t−1𝛽t

𝜀t rt𝜇t′(𝛼t)𝜋t−1
ft(st−1)𝛽t

rt−1

= rt𝜃t(𝛼t)𝜇t′(𝛼t)𝜋t−1
𝜀t−1+ ft(st−1)𝛽t

𝜀t+rt−1.

It follows that 𝜀t=1 and

z𝜅t = rt𝜃t(𝛼t)𝜇t′(𝛼t)𝛼t𝜋t−1
𝜀t−1+ ftst

= rt𝜃t(𝛼t)𝜇t′(𝛼t)𝛼t𝜌t−1
𝜅t ,

whence
(𝜇t′(𝛼t))−1= rt𝛼t𝜃t(𝛼t)𝜌t−1

𝜅t . (6.8)
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From this inverse we easily recover the Bézout relation of 𝜇t′ and 𝜇t so the tower (𝔸i)i⩽t
is effectively separable. □

6.4. Conversion costs
Before turning the above construction of the initial expansion into an algorithm,we study
the costs of the conversions Τt and Τt

−1. We recall from section 1.2 that products in 𝔸t
take Õ((s1 ⋅ ⋅ ⋅ st)1+𝜖) operations in𝕂.

PROPOSITION 6.4. Assume that we are given an initial expansion of a contact tower, and let a be
homogeneous of valuation 𝜎⩾0 in 𝕂[[z]][𝜑1, . . . ,𝜑t]/(in(It)). Recall that Rt≔ r1 ⋅ ⋅ ⋅ rt. Then
we can compute Τt(a) in the form c𝜋t

𝜎Rt with c∈𝔸t using

Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(𝜎Rt) t)

operations in 𝕂. Conversely, given c𝜋t
𝜎Rt with c∈𝔸t, we can compute

Τt
−1(c𝜋t

𝜎Rt)∈𝕂((z))[𝜑1, . . . ,𝜑t]/(in(It))

with the same cost bound. In addition, if c∈𝔸t has degree <l in 𝛼t and if rt divides 𝜎Rt, then we
can compute Τt

−1�c𝜋t−1
𝜎Rt−1� using

Õ(l(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(𝜎Rt−1) t)
operations in 𝕂.

Proof. LetA denote the canonical representative of a. There exists k such that 0⩽k⩽rt−1
and

A=𝜑t
k �
j=0

st−1

Crtj+k𝜑t
rtj.

For j=0,. . .,st−1we recursively compute cj𝜋t−1
(𝜎−(rtj+k)𝛾t)Rt−1≔Τt−1(Crtj+k)with cj∈𝔸t−1.

Then we verify

Τt(A) = 𝛽t
k �
j=0

st−1

Τt−1(Crtj+k)𝛽t
rtj

= 𝛽t
k �
j=0

st−1

cj𝜋t−1
(𝜎−(rtj+k)𝛾t)Rt−1𝛽t

rtj

= 𝛽t
k �
j=0

st−1

cj𝜋t−1
(𝜎−(rtj+k)𝛾t)Rt−1𝛼t

j𝜋t−1
ftj (using (6.3))

= ((((((((((((((((((
((
(
(�

j=0

st−1

cj𝛼t
j

))))))))))))))))))
))
)
)𝜋t−1

(𝜎−k𝛾t)Rt−1𝛽t
k (using (6.2))

= ((((((((((((((((((
((
(
(�

j=0

st−1

cj𝛼t
j

))))))))))))))))))
))
)
)𝛼t−vt(𝜎−k𝛾t)Rt−1+utk𝜋t

𝜎Rt. (using (6.2), (6.5), and (6.6))

Recall that the inverse of 𝛼t is at our disposal and that the cj belong to 𝔸t−1. So we need
to compute 𝛼t

−vt(𝜎−k𝛾t)Rt−1+utk using binary powering and fast tower arithmetic. Then, we
multiply this quantity by ∑j=0

st−1 cj𝛼t
j. These products require

Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 (log(|vt| (𝜎−k𝛾t)Rt−1+|ut|k)+1))
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operations in𝕂. Since |vt|< rt and |ut|< ft=𝛾tRt, we may simplify

log(|vt| (𝜎−k𝛾t)Rt−1+|ut|k)⩽log((𝜎−k𝛾t)Rt+k𝛾tRt)=log(𝜎Rt).

Let Ct(𝜎) be the cost of evaluating Τt at any valuation ⩽𝜎. We have shown that

Ct(𝜎)= stCt−1(𝜎)+ Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(𝜎Rt)),
whence

Ct(𝜎)=O(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(𝜎Rt) t).

The above formulas can be read in reverse order for performing a backward conver-
sion Τt

−1, with a similar cost; note that k= ft−1𝜎Rtmod rt.
The second assertion of the proposition corresponds to the special case where k=0,

which leads to the cost lCt−1(𝜎) via the following formulas:

Τt
−1

((((((((((((((((((
((
(
(
((((((((((((((((((
((
(
(�
j=0

l

cj𝛼t
j

))))))))))))))))))
))
)
)𝜋t−1

𝜎Rt−1))))))))))))))))))
))
)
) = Τt

−1

((((((((((((((((((
((
(
(�
j=0

l

cj𝜋t−1
(𝜎−rtj𝛾t)Rt−1𝛼t

j𝜋t−1
ftj

))))))))))))))))))
))
)
)

= �
j=0

l

Τt
−1�cj𝜋t−1

(𝜎−rtj𝛾t)Rt−1𝛽t
j�

= �
j=0

l

Τt−1
−1 �cj𝜋t−1

(𝜎−rtj𝛾t)Rt−1�𝜑t
j. □

6.5. Cost of initial expansions
Having shown how the conversions Τt and Τt

−1 can be computed efficiently, let us now
turn to the incremental construction of an initial expansion. We keep the same notation
as in section 6.3.

PROPOSITION 6.5. Given the initial forms in(Φ1), . . . , in(Φs) of an effectively separable and
regular contact tower, an initial expansion can be computed using

Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(dt𝛾td) t2)
operations in 𝕂.

Proof. The case t=1 has been detailed in section 6.1: it takes

Õ(s1 log(|u1v1|))= Õ(s1 log( f1 r1))= Õ(s1 log(d1𝛾1 r1))

arithmetic operations in 𝕂. By induction on t we may assume that the initial expansion
has been computed up to height t−1. We write

in(Φt)=𝜑t
dt+Cdt−1𝜑t

dt−1+ ⋅ ⋅ ⋅ +C0,

with the Cj homogeneous in𝕂[z][𝜑1, . . . ,𝜑t−1]. Since 𝜎=dt𝛾t and Rt⩽d, Proposition 6.4
allows us to compute Τt−1(Cjrt) for j=0, . . . , st−1 using

Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(dt𝛾td) t) (6.9)

operations in𝕂. This is sufficient to obtain 𝜇t.
If C0′/z𝛿0 stands for the normalized initial inverse of C0, thenwe can compute c0′𝜋t−1

e0′ =
Tt−1(C0′). Hence

z𝛿0=Tt−1(C0′)Tt−1(C0)= c0′ 𝜋t−1
e0′ c0𝜋t−1

e0 = c0′ c0𝜌t−1
𝛿0 z𝛿0,
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so the computation of the inverse of 𝜇t(0) requires one evaluation of Τt−1 at C0′ and
O(log 𝛿0)=O(log(dt𝛾t)) products in𝔸t−1. The inverse of 𝛼t is then obtained via (6.4)with
O(st) operations in𝔸t−1. The cost of these two tasks does not exceed the bound (6.9).

The computation of the inverse u of 𝜇t′ modulo 𝜇t then requires one evaluation of Τt
at the initial inverse of ∂Φt

∂𝜑t
, then O(log 𝜅t) =O(log(dt 𝛾t)) products in 𝔸t−1, and O(1)

products in 𝔸t, by using formula (6.8). The second cofactor of the Bézout relation of 𝜇t′
and 𝜇t, namely (1−u𝜇t′)/𝜇t, requires O(M(st))= Õ(st) further operations in𝔸t−1.

By using formula (6.7), the computation of 𝜌t from 𝜌t−1 takes

O(log(|vt|Rt−1))=O(logRt))

operations in 𝔸t, that is Õ(st (s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log d) operations in 𝕂. The sum of the costs
for all levels of the tower is bounded by

Õ(((((((((((((((((((�i=1

t

si (s1 ⋅ ⋅ ⋅ si−1)1+𝜖 log(d1 ⋅ ⋅ ⋅ didi𝛾i) t)))))))))))))))))))
= Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(dt𝛾td) t2). □

7. NEWTON FACTORIZATIONS

In this section we apply the lifting algorithms of section 4 in order to compute so-called
Newton factorizations of a polynomial a that is clustered at ℙt (Definition 3.9). These are
partial factorizations that are related to the contact Newton polygon of awith respect to the
current contact coordinates (Definition 7.7).

Until the end of the paper, contact towerswill be effectively separable (Definition 5.1)
and regular (Definition 6.1). Since we occasionally will have to manipulate multiple
contact towers at multiple levels, it is convenient to
• regard an element a∈ℙt as an element in any other ℙi via the natural isomor-

phism Πi
−1∘Πt;

• write

in(a;ℙi),v(a;ℙi), and [a;ℙi]𝛼;𝜂

for the initial form, the valuation, and the truncation of a, when regarded as an ele-
ment in ℙi;

• given A∈𝕂[[z]][𝜑1, . . . ,𝜑i+1], write

in(A;ℙi) and v(A;ℙi)

for the initial form and the valuation of A(𝜑1, . . . ,𝜑i+1) in ℙi.

7.1. Irreducible contact towers
Since we assumed from the outset that we have an algorithm or oracle for factoring uni-
variate polynomials over 𝕂, we are interested in factoring elements of 𝕂[[z]][x] into
irreducible factors. There is a corresponding notion of irreducible contact towers and,
thanks to our oracle, all contact towers that we will need for our main factoring algo-
rithm can be forced to be of this type.
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DEFINITION 7.1. A homogeneous contact polynomial a∈ℙi is said to be initially reducible if
there exists a1 and a2 homogeneous in ℙi∖ℙi−1 such that in(a; ℙi)= in(a1 a2; ℙi). A contact
tower (ℙi)i⩽t is irreducible if in(Φi;ℙi−1) is initially irreducible for i=1, . . . , t.

In view of the initial expansion (𝔸i)i⩽t and (𝔹i)i⩽t of a contact tower (ℙi)i⩽t, we
observe from Lemma 6.3 that (ℙi)i⩽t is irreducible if and only if 𝔸t is a field. Equiv-
alently, (𝔸i)i⩽t is a tower of field extensions. In this case, any non-zero element in ℙt−1
admits a unique normalized initial inverse.

PROPOSITION 7.2. A separable contact tower (ℙi)i⩽t is irreducible if and only if Πt(𝜑t+1;ℙt) is
irreducible.

Proof. If (ℙi)i⩽t is reducible then their exists a smallest index i such that Φi admits an
initial factorization regarded in ℙi−1. This initial factorization yields an initial Hensel
context that can be lifted into a non trivial factorization ofΠt(𝜑t+1;ℙt) by Corollary 4.19.

Conversely assume that (ℙi)i⩽t is irreducible and let b be a factor of Πt(𝜑t+1; ℙt).
Then, in(b; ℙi−1) initially divides in(Φi; ℙi−1), hence b cannot be a non trivial factor of
Πt(𝜑t+1;ℙt). □

The next lemmas are devoted to the complexity of initial inversions.

LEMMA 7.3. Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower, and
assume that its initial expansion has been precomputed. Let b∈ℙt−1 be homogeneous and of
valuation 0 in z. Then, b admits a unique normalized initial inverse, that can be computed with

Õ(dt(d1 ⋅ ⋅ ⋅ dt−1)1+𝜖 log(dt𝛾t))= Õ(d1+𝜖 log(dt𝛾t))
operations in 𝕂.

Proof. From Lemma 3.23 we know that v(b)⩽dt𝛾t. The computation of

Τt(b)= c𝜋t
v(b)Rt

takes

Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(v(b)Rt) t) = Õ(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(dt𝛾tRt) t)
= Õ(dt(d1 ⋅ ⋅ ⋅ dt−1)1+𝜖 log(dt𝛾t))

operations in𝕂 by Proposition 6.4. Then we compute c−1𝜌t−⌈v(b)⌉ in time

O(st(s1 ⋅ ⋅ ⋅ st−1)1+𝜖 log(dt𝛾t))=O(d1+𝜖 log(dt𝛾t)).

Proposition 6.4 allows us to obtain

u≔Τt
−1�c−1𝜌t

−⌈v(b)⌉𝜋t
Rt(⌈v(b)⌉−v(b))�∈ℙt[z−1]

with Õ(dt(d1 ⋅ ⋅ ⋅ dt−1)1+𝜖) further operations. Since v(u)⩾0, Lemma 3.23 implies valz u⩾
−dt𝛾t. We verify that

Τt(in(ub)) = c−1𝜌t−⌈v(b)⌉𝜋t
Rt(⌈v(b)⌉−v(b)) c𝜋t

Rtv(b)

= 𝜌t−⌈v(b)⌉𝜋t
Rt⌈v(b)⌉

= z⌈v(b)⌉,

by using identity 𝜋t
Rt=𝜌t z stated in Definition 6.2. It follows that in(ub)= z⌈v(b)⌉. After

multiplying or dividing u by a suitable power of zwe obtain the normalized initial inverse
of b. □
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LEMMA 7.4. Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower, and
assume that its initial expansion has been precomputed. Let a be clustered at ℙt of degree l⩾1
in 𝜑t+1 such that 𝜑t+1 does not divide in(a), and let b∈ℙt be homogeneous of degree <l in 𝜑t+1
and of valuation 0 in z. We can test whether b admits a normalized initial inverse modulo a or
not, and if so compute this initial inverse with Õ(l d1+𝜖 log(l𝛾t+1)) operations in 𝕂.

Proof. We increment the tower (ℙi)i⩽t withΦt+1=in(a). The extended tower is not nec-
essarily separable or irreducible because of its top level, but this does not prevent from
building the corresponding incremented initial expansionwith the difference that𝔸t+1 is
not a field extension of𝔸t, that is not even necessarily separable. By Proposition 6.5 this
“almost initial expansion” incurs Õ(l d1+𝜖 log(l𝛾t+1)) operations in 𝕂. The conclusion
follows from Lemma 7.3: still writing Τt+1(b)= c𝜋t+1

Rt+1v(b), the required initial modular
inverse exists if and only if c is invertible in𝔸t+1. □

7.2. Contact factors
The following lemma asserts that a is clustered at any ℙi for i⩽ t− 1 as soon as it is
clustered at ℙt.

LEMMA 7.5. Let a∈ℙt be clustered as in Definition 3.9, of degree l in 𝜑t+1. Then, for i=1, . . ., t,
the polynomial a is clustered at ℙi, and we have v(a;ℙi)=mi+1𝛾i+1 where mi+1≔di+1 ⋅ ⋅ ⋅ dt l.

Proof. Note that Πt(a) is monic in x of degree dmt+1. Therefore a is monic in 𝜑i+1 of
degreemi+1when regarded inℙi, for i=0,..., t. The rest of the proof is done by induction
on i from t down to 1. The case i= t corresponds to the hypothesis of the lemma. Now
let us assume that v(a;ℙi)=mi+1𝛾i+1 holds for some i⩽ t, and consider the contact rep-
resentation

a=𝜑i+1
mi+1+ cmi+1−1𝜑i+1

mi+1−1+ ⋅ ⋅ ⋅ + c0
in ℙi, with

v(cj;ℙi−1)=v(cj;ℙi)⩾(mi+1− j)𝛾i+1

for j=0, . . . ,mi+1−1. It follows that

v�cjΦi
j;ℙi−1� ⩾ (mi+1− j)𝛾i+1+ j di𝛾i

⩾ (mi+1− j)di𝛾i+ j di𝛾i
= dimi+1𝛾i,

where the second inequality is strict for j<mi+1. Consequently, v(a;ℙi−1)=mi𝛾i. □

DEFINITION 7.6. Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower
and let a∈ℙt be clustered at (ℙi)i⩽t. An irreducible contact factorization of a at precision
O(z𝜏) is a sequence of pairs �a(j), �ℙi

(j)�i⩽t(j)� modulo O(z𝜏) for j=1, . . . ,n, such that:
• �ℙi

(j)�i⩽t(j) is an effectively separable, regular, and irreducible contact tower for j=1, . . . ,n;
• tj⩾ t and �ℙi

(j)�i⩽t=(ℙi)i⩽t for j=1, . . . ,n;
• a(j)∈ℙt(j) is a power of the last contact coordinate 𝜑t(j)+1 of ℙt(j) for j=1, . . . ,n;
• a=a(1) ⋅ ⋅ ⋅ a(n)+O(z𝜏) (this equality can be regarded equivalently in any ℙi for i⩽ t).

7.3. Contact Newton polygons
Consider a contact polynomial

a= cl𝜑t+1
l + cl−1𝜑t+1

l−1+ ⋅ ⋅ ⋅ + c0∈ℙt,
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with ci∈ℙt−1 for i=0, . . . , l and cl≠0. The Newton polygon𝒩⊆ℝ×(ℝ∪{+∞}) of a is the
lower border of the convex hull of the set of pairs (i, j) with 0⩽ i⩽ l and j⩾v(ci). More
precisely, 𝒩 is a broken line with vertices (i0, j0), . . . , (ir, jr), where
• 0= i0< ⋅ ⋅ ⋅ < ir= l,
• jk=v(cik) for k=0, . . . , r,
• for all i=0,.. ., l such that ci≠0, the point (i,v(ci)) is on or above the Newton polygon.
Any k=1,.. .,r determines an edge ℰk between the vertices (ik−1, jk−1) and (ik, jk), of slope
(jk− jk−1)/(ik− ik−1). The set of points above the Newton polygon is convex. When c0=0
we have j0=+∞, so the slope of the first edge is −∞. In order to establish the usual
relationship between 𝒩 and the Newton polygons of the factors of a, we introduce the
following definition.

DEFINITION 7.7. With the above notation, the Newton polygon (i0, j0),. . ., (ir, jr) of a∈ℙt is said
to be effectively regular when the elements cik are initially invertible inℙt, and we are given the
normalized initial inverses wk/z𝜅k of cik for k=0,...,r. If c0=0 then we set wk≔0 by convention.

The following lemma extends a special case of a classical result about Minkowski
sums of polytopes due to Ostrowski [63] (translated in [65], and revisited later in [64]).
In our variant we need to take care of “carries” involved by the contact arithmetic.

LEMMA 7.8. Let a=∑k=0
la cka𝜑t+1

k and b=∑k=0
lb ckb𝜑t+1

k be contact polynomials in ℙt. Their
respective Newton polygons𝒩a=((i0a, j0a),..., (iraa , jraa )) and𝒩b=��i0b, j0b�,..., (irbb , jrbb )� are assumed
to be regular, the slopes of 𝒩a are strictly smaller than the ones of 𝒩b, and all slopes are⩽−𝛾t+1.
If c0a≠0, cla

a =1, c0b≠0, and clb
b =1, then the Newton polygon 𝒩ab of ab equals

𝒩ab=�(i0a, j0a)+�i0b, j0b�, . . . , (iraa , jraa )+�i0b, j0b�, . . . , (iraa , jraa )+(irbb , jrbb )�.

In addition, the contact polynomial

ab= �
k=0

la+lb
ckab𝜑t+1

k

satisfies in�cika+i0b
ab �=in�cika

a ci0b
b � for k=0, . . . , ra and in�ciraa +ikb

ab �=in�ciraa
a cikb

b� for k=0, . . . , rb.

Proof. First of all, note that the hypothesis on the slopes guarantees that the region of the
plane above the Newton polygon

𝒫≔�(i0a, j0a)+�i0b, j0b�, . . . , (iraa , jraa )+�i0b, j0b�, . . . , (iraa , jraa )+(irbb , jrbb )�
is actually convex.

Let (ia, ja) be a point above 𝒩a. For all k=1, . . . , ra, we have

ja− jk−1
a ⩾ jka− jk−1

a

ika− ik−1
a (ia− ik−1

a ). (7.1)

Similarly, for any point (ib, jb) above 𝒩b and for all k=1, . . . , rb we have

jb− jk−1
b ⩾ jkb− jk−1

b

ikb− ik−1
b �ib− ik−1

b �. (7.2)

Since the slope of the edge ((ik−1
a , jk−1

a ),(ika, jka)) is smaller than the slope of ��i0b, j0b�,�i1b, j1b��,
for k=1, . . . , ra, we obtain

jb− j0b⩾
j1b− j0b

i1b− i0b
(ib− i0b)⩾

jka− jk−1
a

ika− ik−1
a (ib− i0b), since ib⩾ i0b.
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Combining the latter inequality with (7.1) leads to

ja+ jb− jk−1
a − j0b⩾

�jka+ j0b�−�jk−1
a + j0b�

(ika+ i0b)− (ik−1
a + i0b)

(ia+ ib− ik−1
a − i0b),

which means that (ia+ ib, ja+ jb) is above the line spanned by (ik−1
a , jk−1

a )+ �i0b, j0b� and
(ika, jka)+�i0b, j0b�. Similarly, since ia⩽ ira

a and since the slope of the edge ((ira−1
a , jra−1

a ),(ira
a , jra

a ))
is smaller than the one of ��ik−1

b , jk−1
b �, �ikb, jkb��, we obtain

ja− jra
a ⩾ jra

a − jra−1
a

ira
a − ira−1

a (ia− ira
a )⩾ jkb− jk−1

b

ikb− ik−1
b (ia− ira

a ),

for k=1, . . . , rb. In combination with (7.2), this yields

ja+ jb− jra
a − jk−1

b ⩾ �jkb+ jra
a �−�jk−1

b + jra
a �

(ikb+ ira
a )− (ik−1

b + ira
a )

�ia+ ib− ira
a − ik−1

b �,

so (ia+ ib, ja+ jb) is above the line spanned by (iraa , jraa )+�ik−1
b , jk−1

b � and (iraa , jraa )+�ikb, jkb�. So
far, we have proved that (ia+ ib,v(ciaa )+v(ciab )) is above𝒫, for all ia=0,...,ra and ib=0,...,rb.

Since cika
a and ci0b

b are invertible, for k in i0a, . . . , ira
a −1, Lemma 4.3 yields

v�cika
a ci0b

b �=v(cika
a )+v�ci0b

b �.

Now consider the contact polynomial cika
a ci0b

b =e0+e1𝜑t+1∈ℙtwith e0,e1∈ℙt−1, so we have
v�cika

a ci0b
b �=v(e0) and v(e1)⩾v�cika

a ci0b
b �−𝛾t+1. Because the slopes of𝒫 are <−𝛾t+1, the point

(ika+1,v(e1)) is strictly above 𝒫.
Let us fix −𝛾t+1′ <−𝛾t+1 to a value different from the slopes of 𝒩a and 𝒩b. Let us

assume first that −𝛾t+1′ is less than the smallest slope of 𝒩b. If −𝛾t+1′ is less than the
largest slope of𝒩awe let k to be the largest integer such that −𝛾t+1′ is less than the slope of
((ik−1

a , jk−1
a ),(ika, jka)), otherwisewe let k=ra. Let v′ be the corresponding valuation induced

in ℙt: v′(𝜑i)=𝛾i for i⩽ t and v′(𝜑t+1)=𝛾t+1′ ; we write in′ for the corresponding initial
part. We verify that

v′(a) = v(cika
a )+𝛾t+1′ ika and in′(a)=(in(cika

a ))𝜑t+1
ika ,

v′(b) = v�ci0b
b �+𝛾t+1′ i0b and in′(b)=�in�ci0b

b ��𝜑t+1
i0b ,

v′(ab) = v(cika
a )+v�ci0b

b �+𝛾t+1′ (ika+ i0b) and in′(ab)=in�cika
a ci0b

b �𝜑t+1
ika+i0b.

Consequently, Lemma 4.3 implies

�ika+ i0b,v(cika
a )+v�ci0b

b ��=�ika+ i0b, jka+ j0b�

belongs to the Newton polygon of ab, and in�cika+i0b
ab �=in�cika

a ci0b
b �.

Assume now that −𝛾t+1′ is greater than the smallest slope of 𝒩b then we let k to be
the first integer such that −𝛾t+1′ is greater than the slope of ��ik−1

b , jk−1
b �, �ikb, jkb��. Using a

similar argument as above, we may prove that

�ira
a + ikb,v(cra

a )+v�cikb
b��=�ira

a + ikb, jra
a + jkb� (7.3)

belongs to the Newton polygon of ab, and that in�ciraa +ikb
ab �=in�craa cikb

b�. This concludes the
proof. □
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LEMMA 7.9. Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower and let

a= cl𝜑t+1
l + cl−1𝜑t+1

l−1+ ⋅ ⋅ ⋅ + c0

be a contact polynomial with the ci∈ℙt−1 and truncated modulo O(z𝜏) with 𝜏>dt𝛾t. Then, the
effectively regular Newton polygon of a can be computed using

Õ(l d1+𝜖𝜏)
operations in 𝕂.

Proof. We first compute the initial expansion of ℙt, that contributes to Õ(d1+𝜖 log(dt𝛾t))
from Proposition 6.5. Set i in 0, . . . , l. In order to compute the valuation of ci we run over
all its homogeneous components inℙt−1 in increasing valuation order. Up to precision 𝜏,
the number of such components is ⩽𝜏 r1 ⋅ ⋅ ⋅ rt. Each such component has ⩽s1 ⋅ ⋅ ⋅ st terms.
Overall the number of zero tests in𝕂 is O(l d𝜏).

From the valuations of the ci, the computation of the Newton polygon 𝒩 does not
involve arithmetic operations in𝕂, but Õ(l log(𝜏 r1 ⋅ ⋅ ⋅ rt)) bit operations (with the usual
“divide and conquer” algorithm). Finally, for a vertex of abscissa i of theNewton polygon
we need to compute the initial inverse of ci. For this purpose we extract b≔in(ci;ℙt−1)/
zvalzci and appeal to Lemma 7.3. □

7.4. Distinct-slope factorization
Let a∈ℙt be clustered at (ℙi)i⩽t givenwith its effectively regular Newton polygon𝒩. We
are to show that each edge of 𝒩 gives rise to a factor of a.

Algorithm 7.1
Input. An effectively separable, regular, and irreducible contact tower (ℙi)i⩽t alongwith

its initial expansion; a contact polynomial a=𝜑t+1
l + cl−1𝜑t+1

l−1+ ⋅ ⋅ ⋅ + c0∈ℙt given
moduloO(z𝜏)with 𝜏>dt𝛾t and clustered atℙt; the effectively regularNewton polygon
of a (whose slopes are all <−dt𝛾t).
Let 0= i0< i1<⋅⋅⋅< ir−1< ir= l be the abscissas of the vertices of the Newton polygon,
as in Definition 7.7. The normalized initial inverse wk/z𝜅k of cik is part of the input for
k=0, . . . , r.

Output. Contact polynomials a1,...,armoduloO(z𝜏), clustered atℙt, such that a=a1 ⋅⋅⋅ar+
O(z𝜏), cij aj admits a single Newton polynomial that coincides with the j-th one of
a, for j=1, . . . , r.

1. If r=1 then return a.
2. Let h≔⌈r/2⌉ and set 𝛾t+1≔−𝜎h, where 𝜎h is the slope of the edge between abscissas

ih−1 and ih.
3. Compute a1≔in(awh/z𝜅h;ℙt), a2≔[cih]v(cih), u1≔wh, 𝛿1≔𝜅h.

4. Via Corollary 4.14 called with precision O(z𝜏+𝛿1), compute contact polynomials
â1 and â2 inℙt modulo O(z𝜏) such that a= â1 â2+O(z𝜏), â1 is clustered atℙt, in(â1;
ℙt)=in(a1;ℙt), and in(â2;ℙt)=in(a2;ℙt).

5. Recursively call the algorithm with input â1: the vertices of the Newton polygon
of â1 are (i0, j0− jh), (i1, j1− jh), . . . , (ih, 0) and the normalized initial inverses are
in(cihw0;ℙt−1), . . . , in(cihwih−1;ℙt−1) rescaled by suitable powers of z.
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6. Recursively call the algorithmwith input â2: the vertices of theNewton polygon of
â2 are (0, jh), (ih+1− ih, jh+1), . . . , (ir− ih, jr), with normalized initial inverses wih, . . . ,
wir−1.

7. Return the union of the sets of factors returned by the above recursive calls.

PROPOSITION 7.10. Algorithm 7.1 is correct and takes

O(M(l d𝜏) log(l d𝜏) log r)= Õ(l d𝜏)
operations in 𝕂.

Proof. If r=1 then the algorithm is clearly correct. From now assume r⩾2. By defini-
tion of the effectively regular Newton polygon, the value of in(a;ℙt) occurring in step 3
writes as

in(a;ℙt)=[cih;ℙt−1]v(a)−ih𝛾t+1𝜑t+1
ih + ⋅ ⋅ ⋅ +[c0;ℙt−1]v(a).

From in(wh cih/z𝜅h)=1 and v(cj)⩾v(a)+ (ih− j)𝛾t+1⩾v(cih)+𝛾t+1 for j< ih, Lemma 4.3
yields

v(whcj)=v(wh)+v(cj)=𝜅h−v(cih)+v(cj)⩾𝜅h+𝛾t+1.

Then Lemma 3.23 implies valz(wh cj)⩾v(wh cj)−dt𝛾t⩾𝜅h, hence step 3 computes an ini-
tial Weierstraß context for a.

Let a1∞ and a2∞ be as in Corollary 4.14: a= a1∞a2∞, â1= a1∞+O(z𝜏), and â2= a2∞+O(z𝜏)
hold in step 4. From Lemma 7.8 we know that the Newton polygon of a is theMinkowski
sum of those of a1∞ and a2∞ (up to the occasional vertex at infinity of a1∞ and a). Since the
vertices of the Newton polygon of a have valuation in z <𝜏 (or infinity), so are those of
the polygons of a1∞ and a2∞.

Let k∈{0,1} be the first index such that cik≠0. From valz cik<𝜏, Lemma 3.23 implies
v(cik;ℙt−1)<𝜏+dt𝛾t, whence

valz(whcik/z𝜅h)⩽v(whcik/z𝜅h;ℙt)<𝜏+dt𝛾t−v(cih;ℙt−1)⩽𝜏. (7.4)

It follows that the Newton polygon of âi coincides with the one of ai∞ for i=1,2, and that
these polygons are effectively regular, with the initial inverses as in steps 4 and 5.

In step 3, for j= 0, . . . , h− 1, we compute in(cijwh/z𝜅h; ℙt−1) with O(M(d 𝜏) log d)
operations in 𝕂 thanks to Proposition 3.20. The same cost applies to the computation
of in(cihwj; ℙt−1) in step 5. By Corollary 4.14, and since 𝛿1⩽ v(cih)+ d𝛾t⩽2𝜏, the cost
of the lifting in step 4 is

O(M(l d𝜏) log(l d𝜏)).

The depth of the recursive calls isO(log r), so the complexity bound follows from a stan-
dard induction. □

DEFINITION 7.11. Let (ℙi)i⩽t be a contact tower, and let a be a contact polynomial clustered
at ℙt. The distinct-slope factorization of a is made of contact polynomials a1, . . . ,ar clustered
at ℙt such that a=a1 ⋅ ⋅ ⋅ ar, the Newton polygon of ai admits a single edge for i=1, . . . , r and the
sequence of the slopes of these edges is strictly increasing.

COROLLARY 7.12. Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower,
and let a be a contact polynomial clustered at ℙt. Then, there exists a unique distinct-slope fac-
torization of a.
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Proof. Since the tower is irreducible, the Newton polygon of a can be made effectively
regular, thanks to Lemma 7.3. Consequently the existence of the distinct-slope factoriza-
tion of a follows from Proposition 7.10.

Given a distinct-slope factorization a1, . . . , ar, by Lemma 7.8 the slopes of the ai are
those of the Newton polygon of a. If 𝛾t+1 is set to the opposite of the slope of ai then
in(ai;ℙt) is a Newton polynomial of a of slope −𝛾t+1 (up to a power of 𝜑t+1 and up to a
factor in ℙt−1). The uniqueness of the ai thus follows from the uniqueness of the lifting
of the distinct slope factors. □

7.5. Equal-slope factorization
Consider the factorization of an element a∈ℙt whose Newton polygon has a single edge
with finite slope. We have already seen that an initial factorization into pairwise coprime
factors of in(a;ℙt) lifts into a factorization of a. We now explain how to obtain this initial
factorization. The contact polynomial a is assumed to be truncated modulo O(z𝜏) with
𝜏>dt𝛾t.

We assume that the initial expansion of the contact tower has already been computed.
We extend the map Τt (defined in Lemma 6.3) as follows:

Τ̃t: 𝕂((z))[𝜑1, . . . ,𝜑t+1]/(in(It;ℙt)) ⟶ 𝔹i[z−1,yt+1]
𝜑i ⟼ 𝛽i=Τt(𝜑i) for i⩽ t

𝜑t+1 ⟼ yt+1.

We set 𝛾t+1 to be the opposite of the unique slope of the Newton polygon of

a=𝜑t+1
l + cl−1𝜑t+1

l−1+ ⋅ ⋅ ⋅ + c0.
Note that c0≠0. Let

ft+1
rt+1

≔ v(c0;ℙt−1)Rt
l =Rt𝛾t+1 (7.5)

with ft+1 prime to rt+1⩾1 and let ℓ≔ l/rt+1. Note that v(c0)Rt is an integer. In the next
subsection we shall see that the notation is consistent since rt+1 will be the “next ramifi-
cation index”.

We compute 𝜍i𝜋t
ft+1i≔Τt(crt+1i) with 𝜍i∈𝔸t, for i=0, . . . , ℓ−1, and construct

𝜒(xt+1)≔xt+1
ℓ +𝜍ℓ−1xt+1

ℓ−1+ ⋅ ⋅ ⋅ +𝜍0∈𝔸t[xt+1],
so we have

Τ̃t(in(a;ℙt))=𝜋t
ft+1ℓ 𝜒�yt+1/𝜋t

ft+1�. (7.6)
We factor

𝜒=𝜒1 ⋅ ⋅ ⋅ 𝜒s,

where each 𝜒j is a power of a monic irreducible factor and the 𝜒j are pairwise coprime.
For j=1, . . . , s, we let ℓj≔deg 𝜒j and

aj≔Τ̃t
−1�𝜋t

ft+1ℓj 𝜒j�yt+1/𝜋t
ft+1��. (7.7)

We compute aj using

aj=𝜑t+1
rt+1ℓj+Τt

−1�𝜒j,ℓj−1𝜋t
ft+1(ℓj−1)�𝜑t+1

rt+1(ℓj−1)+ ⋅ ⋅ ⋅ +Τt
−1(𝜒j,0),

where 𝜒j,k stands for the coefficient of xt+1
k in 𝜒j.
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LEMMA 7.13. For j=1, . . . , s, the polynomial aj defined in (7.7) is homogeneous, monic in 𝜑t+1,
and of valuation ft+1 ℓj/Rt= ℓjv(a)/ℓ. In addition, we have

in(a;ℙt)=in(a1 ⋅ ⋅ ⋅ as;ℙt).

Proof. The first assertion is clear by construction. The second assertion follows from the
fact that Τt is a ring isomorphism that preserves the valuation. □

We next compute the modular inverses

𝜉j≔(((((((((( 𝜒
𝜒j))))))))))

−1
mod 𝜒j

for j=1, . . . , s. Let us write the expansion of 𝜉j as follows

𝜉j(xt+1) ≔𝜉j,ℓj−1xt+1
ℓj−1+ ⋅ ⋅ ⋅ +𝜉j,0∈𝔸t[xt+1]<ℓj,

let ℓ
˘
⩾0 be the smallest integer such that ft+1 ℓ+ ℓ

˘
is a multiple of Rt and set

ℓ̆≔ ft+1 ℓ+ ℓ
˘

Rt
.

From (7.5), we deduce

ft+1 ℓ+ ℓ
˘
⩽v(c0)Rt+Rt⩽(𝜏+dt𝛾t+1)Rt⩽(2𝜏+1)Rt.

Recall from Definition 6.2 that 𝜋t
Rt=𝜌tz. We further set

uj ≔ Τt
−1�𝜌t−ℓ̆ 𝜉j,ℓj−1𝜋t

ft+1+ℓ
˘

�𝜑t+1
rt+1�ℓj−1�+ ⋅ ⋅ ⋅

+Τt
−1�𝜌t−ℓ̆ 𝜉j,1𝜋t

ft+1(ℓj−1)+ℓ
˘

�𝜑t+1
rt+1+Τt

−1�𝜌t−ℓ̆ 𝜉j,0𝜋t
ft+1ℓj+ℓ

˘

� (7.8)

so we have

Τ̃t(uj) = 𝜌t−ℓ̆ 𝜉j,ℓj−1𝜋t
ft+1+ℓ

˘

yt+1
rt+1�ℓj−1�+ ⋅ ⋅ ⋅ +𝜌t−ℓ̆ 𝜉j,0𝜋t

ft+1ℓj+ℓ
˘

= 𝜌t−ℓ̆𝜋t
ft+1ℓj+ℓ

˘

𝜉j(((((((((((((((((
yt+1
rt+1

𝜋t
ft+1))))))))))))))))).

From
𝜉j(xt+1)

𝜒(xt+1)
𝜒j(xt+1)

=1mod 𝜒j(xt+1)
we deduce that

Τ̃t((((((((((in((((((((((uj
a
aj
rem𝜑t+1 aj;ℙt))))))))))))))))))))

= Τ̃t(uj)
Τ̃t(a)
Τ̃t(aj)

rem𝜋t
ft+1ℓj 𝜒j((((((((((((((

yt+1

𝜋t
ft+1))))))))))))))

= 𝜌t−ℓ̆𝜋t
ft+1ℓj+ℓ

˘

𝜉j(((((((((((((((((
yt+1
rt+1

𝜋t
ft+1)))))))))))))))))

𝜋t
ft+1ℓ 𝜒((((((( yt+1

𝜋t
ft+1)))))))

𝜋t
ft+1ℓj 𝜒j((((((( yt+1

𝜋t
ft+1)))))))

rem𝜋t
ft+1ℓj 𝜒j((((((((((((((

yt+1

𝜋t
ft+1))))))))))))))

= 𝜌t−ℓ̆𝜋t
ft+1ℓ+ℓ

˘

= 𝜌t−ℓ̆𝜋t
ℓ̆Rt

= z ℓ̆,
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whence
in((((((((((uj

a
aj
rem𝜑t+1 aj;ℙt))))))))))=in�Τt

−1�z ℓ̆�;ℙt�=z ℓ̆.

After a division by a suitable power of z, we deduce the normalized initial inverse of a/aj
modulo aj for j=1, . . . , s.

The following algorithm makes use of the separable factorization of univariate poly-
nomials: see [54]. In the case of characteristic zero or sufficiently large, that holds in the
present paper, the separable factorization coincides with the squarefree factorization.

Algorithm 7.2
Input. An effectively separable, regular, and irreducible contact tower (ℙi)i⩽t alongwith

its initial expansion; a contact polynomial a=𝜑t+1
l + cl−1𝜑t+1

l−1+ ⋅ ⋅ ⋅ + c0∈ℙt modulo
O(z𝜏) clustered at (ℙi)i⩽t, with 𝜏>dt𝛾t; the Newton polygon of a, with a single edge
of finite slope −𝛾t+1.

Output. A factorization of a into clustered polynomials aj at (ℙi)i⩽tmoduloO(z𝜏), each aj
has a single edge of slope −𝛾t+1 in its Newton polygon and the associated Newton
polygon is the initial power of an irreducible polynomial.

Assumption. The characteristic of 𝕂 is zero or >l.
1. Compute Τ̃t+1(a) and 𝜒∈𝔸t[xt+1] such that Τ̃t+1(a)=𝜋t

ft+1ℓ 𝜒�yt+1/𝜋t
ft+1ℓ�.

2. Factor 𝜒 =𝜒1 ⋅ ⋅ ⋅ 𝜒s, where 𝜒1, . . . , 𝜒s are pairwise coprime powers of irreducible
factors of 𝜒: this can be done by computing the separable factorization of 𝜒 and
then the irreducible factors of the separable ones.

3. For j=1, . . . , s compute 𝜉j≔� 𝜒
𝜒j
�−1mod 𝜒j.

4. For j=1, . . . , s compute aj as defined in (7.7).
5. For j=1,...,s compute uj as defined in (7.8), and set 𝛿j≔⌊v(a/aj)+ lj𝛾t+1⌋=⌊v(a)⌋.
6. Lift the initial factorization of in(a; ℙt)= in(a1 ⋅ ⋅ ⋅ as; ℙt) into a= â1 ⋅ ⋅ ⋅ âs to preci-

sion O(z𝜏) by using Corollary 4.23 at precision O(z𝜏+⌊v(a)⌋).
7. Return â1, . . . , âs modulo O(z𝜏).

PROPOSITION 7.14. Assume that K holds. Algorithm 7.2 is correct and takes

Õ(l d1+𝜖𝜏)+ F̄𝕂(ℓ̃ d)

operations in 𝕂, where ℓ̃ is the degree of the separable part of 𝜒.

Proof. From the above discussion the required initial Hensel context is known when
entering step 6, so lifting is possible thanks to Corollary 4.23. Using Lemma 3.23 we
verify that

valz([𝜑t+1
0 ] aj) ⩽ v([𝜑t+1

0 ] aj;ℙt−1) (7.9)
= v(a;ℙt−1)−v(a/aj;ℙt−1)
⩽ 𝜏+dt𝛾t−𝛾t+1

< 𝜏.

It follows that the Newton polygon of aj modulo O(z𝜏) has a single edge of slope −𝛾t+1.
We are done with the correctness of the algorithm.

Let 1
Rt+1

ℤ≔Γ̄t+1. Steps 1, 4, and 5 take

Õ(l(s1 ⋅ ⋅ ⋅ st)1+𝜖 log(d𝜏) t)= Õ(l d1+𝜖 log 𝜏)
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by Proposition 6.4. For the factorization of 𝜒 in step 2, as indicated we first compute
the separable factorization 𝜒= 𝜒̃1

1 𝜒̃2
2 ⋅ ⋅ ⋅ 𝜒̃k

k using Õ(ℓ d1+𝜖) operations in 𝕂 by [54], and
then factor 𝜒̃1, . . . , 𝜒k˜ (which are pairwise coprime). Consequently the cost of factoring
over𝔸t is

F𝔸t(deg 𝜒̃1)+ ⋅ ⋅ ⋅ +F𝔸t(deg 𝜒̃k)⩽ F̄𝕂(ℓ̃ d).
Step 3 contributes to

O((s1 ⋅ ⋅ ⋅ st)1+𝜖M(ℓ) log ℓ)

operations in 𝕂: this includes the computation of ∑j=1
s 𝜒

𝜒j
via [26, chapter 10, The-

orem 10.10], the remainders by the 𝜒j via [26, chapter 10, Theorem 10.6], and s⩽ ℓ
modular inversions. Finally, the cost of step 6 follows from Corollary 4.23 and
maxj=1, . . . ,s(𝛿j)⩽𝜏. □

DEFINITION 7.15. Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower,
and let a be a contact polynomial clustered atℙt having a single edge in its Newton polygon. The
equal-slope factorization of a is made of contact polynomials a1,...,ar clustered atℙt such that
a=a1 ⋅ ⋅ ⋅ ar, the Newton polygon of ai admits a single edge of the same slope as a and its Newton
polynomial is the initial of a power of an irreducible homogeneous polynomial for i=1,...,r. These
irreducible homogeneous polynomials are pairwise distinct.

COROLLARY 7.16. Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower,
and let a be a contact polynomial clustered at ℙt having a single edge in its Newton polygon.
Then, there exists a unique equal-slope factorization of a, up to a permutation of the factors.

Proof. The existence follows from Proposition 7.14. As for the uniqueness, assume that
a1, . . . ,ar is an equal-slope factorization of a. In the same way as we constructed 𝜒 from a
in equation (7.6), we define the polynomial 𝜒i∈𝔸t[xt+1] of degree ℓi by

Τ̃t(in(ai;ℙt))=𝜋t
ft+1ℓi 𝜒i�yt+1/𝜋t

ft+1�,

for i=1, . . . , r. The 𝜒i are powers of pairwise distinct irreducible polynomials, so they
coincide with those computed in Algorithm 7.2. □

7.6. Incrementing the contact tower
After distinct-slope and equal-slope factorizations, we have reduced the general situ-
ation to the case where the Newton polygon of a has a single edge and the associated
Newton polynomial is an initial power of an irreducible homogeneous polynomial. This
allows us to increment the underlying contact tower with a new contact coordinate at
level t+1 and then to pursue the factorization of a with respect to the extended tower.
In order to ensure that the extended contact tower is separable, we assume from now on
that the characteristic of 𝕂 is zero or sufficiently large.

Algorithm 7.3
Input. An effectively separable, regular, and irreducible contact tower (ℙi)i⩽t alongwith

its initial expansion; a contact polynomial a=𝜑t+1
l + cl−1𝜑t+1

l−1+ ⋅ ⋅ ⋅ + c0 clustered at
ℙt modulo O(z𝜏) with 𝜏 > dt𝛾t, whose Newton polygon has a single edge of finite
slope −𝛾t+1, and such that the associated Newton polynomial is the initial power of
an irreducible homogeneous polynomial.
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Output. An extended tower (ℙi)i⩽t+1 modulo O(z𝜏), still effectively separable, regular,
and irreducible, and such that a is clustered at it of degree l/dt+1 in 𝜑t+2.

Assumption. The characteristic of 𝕂 is zero or >l.

1. Compute Τ̃t(a) into the form 𝜋t
ft+1ℓ 𝜒�yt+1/𝜋t

ft+1�, with 𝜒∈𝔸t[xt+1].
2. Compute the separable factorization 𝜒 =𝜇mt+1, where 𝜇 is irreducible and sepa-

rable, according to the assumptions.
3. Set st+1≔deg 𝜇= ℓ/mt+1, dt+1≔ rt+1 st+1 as above, and compute

Φt+1≔Τ̃t
−1�𝜋t

ft+1st+1𝜇�yt+1/𝜋t
ft+1��.

4. Extend the contact tower withΦt+1 and extend the initial expansion accordingly.

5.Make level t+1 of the tower effectively separable by computing the inverse of ∂Φt+1
∂𝜑t+1

modulo Φt+1.

PROPOSITION 7.17. Algorithm 7.3 is correct and takes

Õ(l d1+𝜖𝜏)

operations in 𝕂.

Proof. By construction,Φt+1 is homogeneous of valuation ft+1st+1Rt in𝕂[z,𝜑1,...,𝜑t+1],
and (ℙi)i⩽t+1 satisfies all the requirements of Definition 3.1. The incremented tower
remains effectively regular, since the known initial inverse of c0 straightforwardly yields
an initial inverse ofΦt+1(𝜑1,...,𝜑t,0). We extend the initial expansion at level t+1 accord-
ingly. The initial inverse in step 5 does exist because 𝜇 is separable.

Steps 1 and 3 contribute to

Õ(ℓ (s1 ⋅ ⋅ ⋅ st)1+𝜖 log(d𝜏) t)= Õ(l d1+𝜖 log 𝜏)

by Proposition 6.4. Step 2 takesO(M(ℓ) log ℓ) operations in𝔸t by [54]. The cost of step 5
is Õ(ld1+𝜖 log(l𝛾t+1))= Õ(ld1+𝜖 log 𝜏) by Lemma 7.4. Finally, a is initially equal toΦt+1

mt+1

whenever 𝛾t+2>dt+1𝛾t+1, which means that a is clustered at ℙt+1. □

7.7. The central shift algorithm

In principle, Algorithm 7.3 might introduce a new contact coordinateΦt+1 of degree one
in 𝜑t+1. For complexity reasons it is better to avoid this from happening. As outlined in
the introductory sections 2.5 and 2.6, we now work out the central shift algorithm.

Let (ℙi)i⩽t be an effectively separable, regular, and irreducible contact tower. Let
a=cl𝜑t+1

l +cl−1𝜑t+1
l−1+ ⋅⋅ ⋅+c0 be clustered atℙt. An initial root of a is an element f ∈ℙt−1

such that

[cl f l+ cl−1 f l−1+ ⋅ ⋅ ⋅ + c0]v(a;ℙt)=0.

If b= ch′ 𝜑t+1
h + ch−1′ 𝜑t+1

h−1+ ⋅ ⋅ ⋅ + c0′ is a Newton polynomial of a, then an initial root of b is
an initial root of a regarded with 𝛾t+1 set to the opposite of the slope of b. One key idea
behind the central shift algorithm is the following lemma, that will be used in a “divide
and conquer” fashion in the subsequent algorithm.
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LEMMA 7.18. Let a be a contact polynomial clustered at ℙt, and let f be a non-zero initial root of
in(a;ℙt) of multiplicity l⩾1. If the characteristic of 𝕂 is zero or >l, then f is an initial root of
dh a
d𝜑1

h of multiplicity l−h, for h=0, . . . , l.

Proof. Set 𝛾t+1≔v( f ;ℙt). Lemma 5.7 implies

in((((((((((((((
dh a
d𝜑1

h ;ℙt))))))))))))))=in((((((((((((((((((((((((
d𝜑t+1
d𝜑1 ))))))))))

h ∂h a
∂𝜑t+1

h ;ℙt)))))))))))))). (7.10)

Since the tower is separable, we know from Lemma 5.4 that d𝜑t+1
d𝜑1

is initially invertible,
hence f is an initial root of in� dh a

d𝜑1
h ;ℙt� of multiplicity h. □

Algorithm 7.4
Input. An effectively separable, regular, and irreducible tower (ℙi)i⩽t; a contact polyno-

mial a∈ℙt clustered at ℙt and of degree l⩾1 in 𝜑t+1 modulo O(z𝜏), with 𝜏>dt𝛾t; we
assume that in(a;ℙt)=in((𝜑t+1− f )l;ℙt), where f is initially invertible in ℙt−1.

Output. An effectively separable, regular, and irreducible tower (ℙ
˘
i)i⩽t such thatℙ

˘
i=ℙi

for i=1, . . . , t−1, and the non-zero initial roots of the Newton polynomials of a have
multiplicity ⩽l/2.

1. If l=1 then replace Φt by Φt− f and return (ℙi)i⩽t.
2. Let h≔⌊l/2⌋ and compute the Weierstraß normalization b of dh a

d𝜑1
h modulo O(z𝜏)

via Corollary 4.14. The initial context is made of

a1≔in((𝜑t+1− f )l−h;ℙt), a2≔in(((((((((( l!
(l−h)! ((((((((((d𝜑t+1

d𝜑1 ))))))))))
h
;ℙt−1)))))))))),

and the normalized initial inverse u1/z𝛿1 of a2 in ℙt−1.
3. Call the algorithm recursively with input (ℙi)i⩽t and b modulo O(z𝜏). Let (ℙ̃i)i⩽t

be the tower obtained in return.
4. Compute the effectively regular Newton polygon of a in ℙ̃t modulo O(z𝜏) via

Lemma 7.9.
5. Compute the distinct-slope factorization of a in ℙ̃t modulo O(z𝜏) with Algo-

rithm 7.1.
6. If all the non-zero initial roots of the Newton polynomials of a have multi-

plicity ⩽l/2, then return (ℙ̃i)i⩽t modulo O(z𝜏).
7. Otherwise, compute the factor ãmoduloO(z𝜏) of a of degree l̃ in𝜑t+1whose initial

is the l̃-th power of a linear factor 𝜑̃t+1− f̃ with l̃> l/2, f̃ non-zero, and where 𝛾t+1
is set to v( f̃ ;ℙt−1).

8. Let h̃≔ l̃−(l−h) and compute theWeierstraß normalization b̃ of dh̃ ã

d 𝜑̃1
h̃
moduloO(z𝜏)

via Corollary 4.14. The initial context is made of

ã1≔in�(𝜑̃t+1− f̃ )l̃−h̃; ℙ̃t�, ã2≔in((((((((((((((
l̃!

(l̃− h̃)! ((((((((((
d 𝜑̃t+1
d𝜑1 ))))))))))

h̃
;ℙt−1)))))))))))))),

and the normalized initial inverse ũ1/z𝛿1̃ of ã2 in ℙt−1.
9. Call the algorithm recursively with input (ℙ̃i)i⩽t and b̃modulo O(z𝜏). Return the

tower (ℙ
˘
i)i⩽t obtained in the output.
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PROPOSITION 7.19. Algorithm 7.4 is correct and takes

Õ(l d1+𝜖𝜏)
operations in 𝕂.

Proof. If the algorithm exits at step 1, then a=𝜑t+1when regarded in the returned tower.
Since v( f ;ℙt−1)>v(Φt;ℙt−1) the initial form of the returned Φt is the same as the initial
form of the input value of Φt, hence the returned tower is effectively separable, regular,
and irreducible. The Newton polynomial of a cannot have non-zero initial roots with
respect to the returned contact tower, so the output is correct.

The initial Weierstraß context in step 2 follows from equation (7.10). If the algorithm
exits at step 6, then the output is clearly correct. Let us now examine the situation when
the algorithm does not exit at step 6.

In step 7, Lemma 7.18 ensures that f̃ is a non-zero initial root of a Newton polynomial
of dh a

d𝜑1
h of multiplicity l̃− h, regarded in ℙ̃t. Since 𝛾̂t+1>𝛾t+1, f̃ is a non-zero initial root

of a Newton polynomial of b of multiplicity l̃−h. As a non-zero initial root of a Newton
polynomial of a modulo O(z𝜏) we necessarily have valz� f̃ l̃ a2�<𝜏, hence

v� f̃ l̃ a2;ℙt−1�<𝜏+dt𝛾t

by Lemma 3.23. From Lemma 4.3, we deduce that

v� f̃ l̃;ℙt−1�<𝜏+dt𝛾t−v(a2)⩽𝜏,
and consequently that

valz� f̃ l̃−h�⩽v� f̃ l̃−h;ℙt−1�<𝜏.

It follows that f̃ is a non-zero initial root of a Newton polynomial of b of multiplicity l̃−h
modulo O(z𝜏), hence that l̃−h⩽(l−h)/2. Consequently,

l̃⩽(l+h)/2. (7.11)

We verify that h̃= l̃− (l−h)> l/2− (l− h)= h− l/2>−1, so h̃⩾0. In step 8, the contact
polynomial b̃ has degree l̃− h̃= l− h in 𝜑̃t+1. By Lemma 7.18, inequality (7.11), and by
following the same reasoning as for b, a non-zero initial root of a Newton polynomial of
ã in ℙ

˘
t has multiplicity

⩽(l̃− h̃)/2+ h̃=(l̃+ h̃)/2= l̃− (l−h)/2⩽(l+h)/2− (l−h)/2=h⩽ l/2.

Let us now examine the Newton polynomials of a in ℙ̃t. For this purpose, by means of
Corollaries 7.12 and 7.16, we may decompose a into

a=a−a= ã a+,

where a− has Newton polynomials with slopes <−𝛾t+1, where a+ has Newton polyno-
mials with slope >−𝛾̃t+1, and where a= has a single Newton polynomial of slope −𝛾t+1
but that does not admit f̃ for initial root.

The initial ofΘ≔Φ
˘
t−Φt is f̃ , so its valuation is 𝛾t+1. Therefore the Newton polygon

of a− in ℙ
˘
t has a single edge of slope −𝛾t+1. We also verify that the Newton polygon of

a= inℙ
˘
t admits a single edge of slope −𝛾t+1. Then, the Newton polygon of a+ inℙ

˘
t is the

same as in ℙ̃t. Finally the Newton polygon of ã in ℙ
˘
t has slopes <−𝛾t+1. Consequently

the non-zero initial roots of the Newton polynomials of a in ℙ
˘
t cannot have multiplici-

ties >l/2. We are done with the proof of the correctness.
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From Lemma 5.4 we have

in((((((((((d𝜑t+1
d𝜑1 ))))))))))=in((((((((((∂Φt

∂𝜑t
⋅ ⋅ ⋅ ∂Φ1

∂𝜑1 )))))))))).
Therefore, by using Proposition 3.20, the initial inverse of d𝜑t+1

d𝜑1
can be obtained with

Õ(d𝜏) operations in 𝕂 from the precomputations attached to (ℙi)i⩽t. The needed ini-
tial Weierstraß contexts in steps 2 and 8 can be obtained with Õ(l d𝜏) operations in 𝕂
thanks to Proposition 3.20 again. The correspondingWeierstraß normalizations take fur-
ther Õ(l d𝜏) operations in𝕂 by Corollary 4.14.

Let C(l) represent the cost of the algorithmwith input a of degree l. In step 1, the cost
is C(1)=O(d 𝜏). In step 4 the effectively regular Newton polygon can be determined
with cost Õ(l d1+𝜖𝜏) by Lemma 7.9. Step 5 amounts to Õ(l d𝜏) by using distinct-slope
factorization and Proposition 7.10. In step 6, we appeal to the equal-slope factorization
but discarding the irreducible factorizations: in fact, having a root of multiplicity >l/2
is equivalent to having a separable factor of multiplicity >l/2, that can thus be read off
from the separable factorization. So Proposition 7.14 provides us with a cost Õ(l d1+𝜖𝜏)
for steps 6 and 7. Consequently the cost C(l) of the algorithm in degree l in 𝜑t+1 satisfies

C(l)=C(l−h)+C(h)+ Õ(l d1+𝜖𝜏).

We conclude by a standard induction. □

8. CONTACT FACTORIZATION

We are now in a position to present our top level algorithm for contact factorization.
The distinct-slope and equal-slope factorizations are intertwined in order to increase the
current contact tower and split the input polynomials. The process finishes once the
polynomial to be factored is a power of the top level contact coordinate, up to the input
precision. The central shift algorithm ensures that the “divide and conquer” approach
only incurs a logarithmic complexity overhead.

8.1. Recentered Newton steps
The main step of the contact factorization is summarized in the following algorithm.

Algorithm 8.1
Input. (ℙi)i⩽t effectively separable, regular, and irreducible; a contact polynomial a=

𝜑t+1
l + cl−1𝜑t+1

l−1+ ⋅ ⋅ ⋅ + c0∈ℙt modulo O(z𝜏) clustered at ℙt, with 𝜏>dt𝛾t.
Output. A setℛ of contact factors �a(j), �ℙi

(j)�i⩽t�with precisionO(z𝜏) for j=1,...,n such
that:
a) �ℙi

(j)�i⩽t−1=(ℙi)i⩽t−1, for j=1, . . . ,n;
b) a=a(1) ⋅ ⋅ ⋅ a(n)+O(z𝜏);
c) a(j) is clustered at ℙt

(j), for j=1, . . . ,n;
d) The Newton polygon of a(j) with respect to �ℙi

(j)�i⩽t has a single edge whose
Newton polynomial is an initial power of an homogeneous polynomial of degree ℓi
in 𝜑t+1;
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e) If the Newton polygon of a(j) has a non-zero initial root, then its multiplicity is
⩽max(l/2,1).

Assumption. The characteristic of 𝕂 is zero or >l.

1. Initialize ℛ with the empty set.
2. Compute the effectively regular Newton polygon of a modulo O(z𝜏) via

Lemma 7.9, and then the distinct-slope factorization of a modulo O(z𝜏) by using
Algorithm 7.1. Let 𝒜 be the set of factors obtained in return.

3. For each b in 𝒜, compute the equal-slope factorization of b over (ℙi)i⩽t by using
Algorithm 7.2. Let ℬ be the set of all resulting factors along with their multiplic-
ities.

4. For each b inℬ of multiplicity written m:
a. If m⩽ l/2, then insert (b, (ℙi)i⩽t) inℛ .
b. If m> l/2 (so b is an initial power of a polynomial of degree one in 𝜑t+1), then

call Algorithm 7.4 and append the resulting factorization to ℛ .
5. Returnℛ .

PROPOSITION 8.1. Assume that K holds. Algorithm 8.1 is correct and takes at most

Õ(l d1+𝜖𝜏)+ F̄𝕂((ℓ1+ ⋅ ⋅ ⋅ + ℓn)d)
operations in 𝕂.

Proof. Properties (a) to (e) are satisfied by construction. Step 2 takes Õ(l d1+𝜖 𝜏) by
Lemma 7.9 and Proposition 7.10. Step 3 totalizes Õ(l d1+𝜖 𝜏)+ F̄𝕂((ℓ1+ ⋅ ⋅ ⋅ + ℓn) d) by
Proposition 7.14. Step 4 contributes to Õ(l d1+𝜖𝜏) by Proposition 7.19. □

8.2. Main algorithm
Our top level algorithm finally makes a repeated use of Algorithm 8.1.

Algorithm 8.2
Input. (ℙi)i⩽t effectively separable, regular, and irreducible; a∈ℙt clustered atℙtmodulo

O(z𝜏), of degree l in 𝜑t+1, with 𝜏>dt𝛾t.
Output. An irreducible contact factorization of a modulo O(z𝜏).
Assumption. The characteristic of 𝕂 is zero or >l.

1. Initialize ℛ and 𝒮 with the empty set.
2. Call Algorithm 8.1 and let �a(j), �ℙi

(j)�i⩽t� denote the returned contact factors for
j=1, . . . ,n.

3. For j=1, . . . ,n:
• If a(j) is a power of 𝜑t+1

(j) then insert �a(j), �ℙi
(j)�i⩽t� into 𝒮.

• Otherwise, call Algorithm 7.3 with a(j) and �ℙi
(j)�i⩽t and let �ℙi

(j)�i⩽t+1 be the
returned tower.

• If a(j) equals Φt+1
(j) then insert �a(j), �ℙi

(j)�i⩽t+1� into 𝒮.

• If Φt+1
(j) has degree 1 in 𝜑t+1 and writes Φt+1

(j) =𝜑t+1− f , then replace Φt
(j) by

Φt
(j)− f and insert the pair �a(j), �ℙi

(j)�i⩽t� into ℛ .
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• Otherwise insert the pair �a(j), �ℙi
(j)�i⩽t+1� into ℛ .

4. Call the algorithm recursively for each element ofℛ . Include the returned factors
into 𝒮.

5. Return 𝒮.

PROPOSITION 8.2. Assume that K holds. Algorithm 8.2 is correct and takes at most

Õ((l d)1+𝜖𝜏)+2 F̄𝕂(l d)
operations in 𝕂.

Proof. On the one hand, if the initial of a(j) is a power of a degree one polynomial, then
according to the specification of Algorithm 8.1 we have

deg𝜑t+1 a
(j)⩽max(l/2,1).

On the other hand, if a(j) is an initial power of a polynomial Φt+1
(j) of degree ⩾2, then

deg𝜑t+2 a
(j)= deg𝜑t+1 a(j)

deg𝜑t+1Φt+1
(j) ⩽ l/2.

Consequently the depth of the recursive calls is O(log l). Let us analyze the valuation
of v�Φt+1

(j) ;ℙt�. If Φt+1
(j) comes from a proper distinct-slope factor or a proper equal-slope

factor of a then inequalities (7.4) and (7.9) ensure that

dt+1𝛾t+1=v�Φt+1
(j) ;ℙt�<𝜏.

Otherwise a has a single slope and its initial is separable, so n=1, Φt+1
(1) = a and this case

does not yield a recursive call. We conclude that the algorithm behaves as specified.
Discarding factorization costs, step 2 takes Õ(l d1+𝜖𝜏) operations in 𝕂, by Proposi-

tion 8.1. In step 3, by Proposition 6.5, for each j=1,...,n the initial expansion of �ℙi
(j)�i⩽t(j)

takes Õ((d(j))1+𝜖), where d(j) represents the degree of �ℙi
(j)�i⩽t(j). By Proposition 7.17, the

cost of Algorithm 7.3 is Õ(l(j)(d(j))1+𝜖𝜏), where l(j) denotes the degree of a(j) in its main
variable 𝜑t(j)+1

(j) . The total cost of steps 3 is

Õ((((((((((((((((((
((
(
(�
j=1

n

l(j)(d(j))1+𝜖𝜏))))))))))))))))))
))
)
)= Õ((l d)1+𝜖𝜏).

Let �b(j), �ℙi
(j)�i⩽t(j)� for j=1, . . . ,m denote the elements of ℛ when entering step 4. By

construction we have

�
j=1

m

deg𝜑t(j)+1
b(j)degℙt(j)

(j)⩽ l d.

IfT(l,d) represents the cost function of the algorithm (still discarding factorizations), we
have shown that

T(d, l)= Õ((l d)1+𝜖𝜏)+ �
1⩽ j⩽m

T�deg𝜑t(j)+1
b(j),degℙt(j)

(j)�,

and that T(1,d)= Õ(d1+𝜖𝜏). Unrolling the recursion O(log l) times leads to

T(l,d)= Õ((l d)1+𝜖𝜏 log l)= Õ((l d)1+𝜖𝜏).
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Let us now turn to the cumulated cost�(l,d) of factoring separable polynomials over
algebraic extensions of 𝕂 during the execution of Algorithm 8.2. Let us show by induc-
tion on d and l⩾2 that

�(l,d)⩽ F̄𝕂(l d)+ F̄𝕂((l−2)d). (8.1)

This is easy if l=2, so assume that l>2. We recall that

F̄𝕂(l1)+ ⋅ ⋅ ⋅ + F̄𝕂(lk)⩽ F̄𝕂(l1+ ⋅ ⋅ ⋅ + lk)

holds for any positive integers l1,..., lk. Assume first that a has a non-trivial distinct-slope
factorization a= a1 ⋅ ⋅ ⋅ ak during Algorithm 8.1 and let l1, . . . , lk be the degrees of a1, . . . ,ak
in 𝜑t+1. Then the induction hypothesis implies

�(l,d) ⩽ �(l1,d)+ ⋅ ⋅ ⋅ +�(lk,d)
⩽ F̄𝕂(l1d)+ F̄𝕂(d (l1−2))+ ⋅ ⋅ ⋅ + F̄𝕂(d lk)+ F̄𝕂(d (lk−2))
⩽ F̄𝕂(l1d+ ⋅ ⋅ ⋅ + lkd)+ F̄𝕂((l1−2+ ⋅ ⋅ ⋅ + lk−2)d)
= F̄𝕂(l d)+ F̄𝕂(l d−2kd)
⩽ F̄𝕂(l d)+ F̄𝕂(l d−2).

Assume next that the Newton polygon of a has a unique slope and that the associated
Newton polynomial is the m-th power of an irreducible polynomial of degree ⩾2, for
some m⩾2. Then the induction hypothesis yields

�(l,d) = �(l/m,md)
⩽ F̄𝕂(l d)+ F̄𝕂((l−2m)d)
⩽ F̄𝕂(l d)+ F̄𝕂((l−2)d).

Assume finally that the Newton polygon of a has a unique slope and that the associated
Newton polynomial 𝜒 has at least two distinct prime factors. Consider the separable
factorization

𝜒=𝜒1
1𝜒2

2 ⋅ ⋅ ⋅ 𝜒k
k

and let l1, . . . , lk be the degrees of 𝜒1, . . . , 𝜒k in 𝜑t+1. Note that l1+ ⋅ ⋅ ⋅ + lk⩾2 and

�(l,d)⩽ �
1⩽ j⩽k

F̄𝕂(ljd)+ �
2⩽ j⩽k

�(ljd, j).

Applying the induction hypothesis, this again yields

�(l,d) ⩽ �
1⩽ j⩽k

F̄𝕂(ljd)+ �
2⩽ j⩽k

(F̄𝕂(lj j d)+ F̄𝕂(lj (j−2)d))

⩽ F̄𝕂(((((((((((((( �
1⩽ j⩽k

lj j d))))))))))))))+ F̄𝕂(((((((((((((( �
2⩽ j⩽k

(ljd+ lj (j−2)d)))))))))))))))
= F̄𝕂(l d)+ F̄𝕂(((((((((((((( �

1⩽ j⩽k
(lj j− lj)d))))))))))))))

= F̄𝕂(l d)+ F̄𝕂((((((((((((((((((((((((((((l− �
1⩽ j⩽k

lj))))))))))))))d))))))))))))))
⩽ F̄𝕂(l d)+ F̄𝕂((l−2)d).

We conclude by induction that (8.1) indeed holds. □

68 APPROXIMATE CONTACT FACTORIZATION OF GERMS OF PLANE CURVES



Proof of Theorem 1.1. Theorem 1.1 is a consequence of Proposition 8.2 by applyingAlgo-
rithm 8.2 with input a=P and the trivial contact tower of height zero. □

8.3. Approximate roots
We explain how Abhyankar's approximate roots theory could improve our contact fac-
torization algorithm in some cases. If f ∈𝕂[x] is a monic polynomial of degree l and ifm
is a divisor of l that is invertible in 𝕂, then there exists a unique polynomial g of degree
l/m such that

deg( f − gm)< l
m (m−1)= l− l

m . (8.2)

This polynomial g is called the m-th approximate root of f . In particular, g is monic and
the g-adic expansion of f is of the form

f = gm+ fm−2gm−2+ ⋅ ⋅ ⋅ + f0,

where fi∈𝕂[x]<l/m. Let f̃ (x)≔xl f (1/x), that is the reverse of f , and g̃(x)≔xl/mg(1/x).
Condition (8.2) is equivalent to

f̃ (x)= g̃(x)m+O�x
l
m+1�,

which means that g is uniquely determined by g̃(x)≔[ f̃ (x)1/m]0;l/m+1, whenever 𝕂 is a
perfect field. The computation of the m-th approximate root of f̃ can be done using the
Newton operator if m is not 0 in𝕂: we define the sequence (hi)i⩾0

h0≔ f̃ (0)=1, hi+1≔hi+hi f (1− f him)/m+O�x2i+1�.

A standard computation shows that this sequence converges quadratically to f −1/m. The
computation of g̃ by this method takes O(M(l/m) logm) operations in 𝕂. Let us now
extend this construction to contact coordinates.

LEMMA 8.3. Let a∈ℙt be monic of degree l in 𝜑t+1, and let m be a divisor of l that is invertible
in 𝕂. Then, there exists a unique b∈ℙt monic of degree l/m in 𝜑t+1 such that

deg𝜑t+1(a−bm)< l− l/m.

Proof. The condition rewrites

deg(Πt(a)−Πt(b)m)<d (l− l/m),

and we have deg(Πt(a)) = d l, deg(Πt(b)) = d l/m. Therefore Πt(b) is uniquely deter-
mined as the m-th approximate root of Πt(a). □

In the context of Lemma 8.3, the b-adic expansion of a has the form

a=bm+am−2bm−2+ ⋅ ⋅ ⋅ +a0.

The algorithmic purpose of approximate roots is as follows. Suppose that

in(a)=in(bm)

for some b∈ℙt monic in 𝜑t+1. We can add one level to ℙt with

Φt+1≔b and 𝛾t+1≔v(b)/deg𝜑t+1 b.
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We write a′ for the image of a in ℙt+1 and examine the Newton polygon of a′. If we had

in(a′)= in((𝜑t+2+ c)m),

with some c∈ℙt, this would mean that

[a′]0;mv(c)+𝜖=[(b+ c)m]0;mv(c)+𝜖=[a]0;mv(c)+𝜖,

for some sufficiently small positive value of 𝜖. In particular, the b-adic expansion of a
would be

[a]0;mv(c)+𝜖=[[[[[[[[[[[[[[[[[�i=0

m

�mi � c
m−ib i]]]]]]]]]]]]]]]]]0;mv(c)+𝜖

whence
[a]0;(m−1)v(b)+v(c)+𝜖=[bm+mcbm−1]0;(m−1)v(b)+v(c)+𝜖.

The latter equality is not possible since it contradicts the fact that b is an approximate root
of a.

Consequently, the Newton polygon of a′ cannot have a single edge with a Newton
polynomial of the form in((𝜑t+2+ c)m). Either it has at least two edges, or a single edge
but the initial factors of the Newton polynomial have multiplicity<m. For the situations
similar to the one of section 2.5 these computations are expected to be faster and easier
than the central shift method.

9. IRREDUCIBLE FACTORIZATION

In this sectionwe consider amonic and separable polynomialA∈𝕂[[z]][x]. We are inter-
ested in computing the irreducible factorization of A modulo O(z𝜎) for some requested
precision 𝜎. Our strategy naturally relies on computing a contact factorization of A for
a sufficiently large precision. We begin with analyzing the precision loss induced by
the distinct slope and equal-slope factorizations.

9.1. Roots and contact representation
Let A∈𝕂[[z]][x] be monic and separable, and let (ℙi)i⩽t be a contact tower. Let𝕂((z))
denote an algebraic closure of 𝕂((z)), we still write valz for the extended valuation.

LEMMA 9.1. Assume that Πt
−1(A) is clustered at ℙt. If 𝜓∈𝕂((z)) is a root of A, then

valz(Ψi(𝜓))⩾𝛾i+1,

for i=0, . . . , t. In addition, for all B∈𝕂[[z]][x] we have

valz(B(𝜓))⩾v(Πt
−1(B);ℙt).

Proof. From Lemma 7.5 we know that Π0
−1(A) is clustered at ℙ0, hence

v(Π0
−1(A);ℙ0)=d1 ⋅ ⋅ ⋅ dtmt+1𝛾1,

where mt+1≔deg𝜑t+1(Πt
−1(A)). Since A(𝜓)=0, necessarily valz(Ψ0(𝜓))⩾𝛾1 holds.

Assume that the lemma holds up to some index i∈{0,. . ., t−1}. From Lemma 7.5, the
contact polynomial Πi

−1(A) is clustered at ℙi. Let us canonically write

Πi
−1(A)=𝜑i+1

li + cli−1𝜑i+1
li−1+ ⋅ ⋅ ⋅ + c0,
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where li≔di+1 ⋅ ⋅ ⋅ dtmt+1 and cj∈ℙi−1. By induction we have

valz(Πi−1(cj)(𝜓))⩾v(cj;ℙi−1)⩾(li− j)𝛾i+1,

for j=0, . . . , li−1. Since

A(𝜓)=Ψi(𝜓)li+Πi−1(cli−1)(𝜓)Ψi(𝜓)li−1+ ⋅ ⋅ ⋅ +Πi−1(c0)(𝜓)=0,

necessarily valz(Ψi(𝜓))⩾𝛾i+1 holds. Let B∈𝕂[[z]][x] be canonically written

Πi
−1(B)= cn′ 𝜑i+1

n + cn−1′ 𝜑i+1
n−1+ ⋅ ⋅ ⋅ + c0′,

with cj′∈ℙi−1. Thanks to the induction hypothesis, we verify that

valz(B(𝜓)) = valz(Πi−1(cn′)(𝜓)Ψi(𝜓)n+Πi−1(cn−1′ )(𝜓)Ψi(𝜓)n−1+ ⋅ ⋅ ⋅ +Πi−1(c0′)(𝜓))
⩾ min(v(cn′ ;ℙi−1)+n𝛾i+1,v(cn−1′ ;ℙi−1)+(n−1)𝛾i+1, . . . ,v(c0′;ℙi−1))
= v(Πi

−1(B);ℙi).

Finally the lemma holds for index i+1. □

If (ℙi)i⩽t is a separable, regular, and irreducible contact tower, then Lemmas 4.3
and 7.3 imply that v is a valuation of 𝕂((z))[x] that extends valz.

PROPOSITION 9.2. Let (ℙi)i⩽t be a separable, regular, and irreducible contact tower and let F≔
Πt(𝜑t+1). Then v is the unique valuation of 𝕂((z))[x]/(F) that extends valz and we have

v(A)= valz(Resx(A,F))
degx F

,

for all A in 𝕂((z))[x]/(F).

Proof. Proposition 7.2 ensures that F is irreducible. By setting 𝛾t+1 to infinity we obtain
that v is a valuation ofℙt/(𝜑t+1). The uniqueness and the resultant-based expression are
well known; for instance, see [53, chapter XII, Corollary 6.2]. □

9.2. Discriminants

Let A be monic in 𝕂[[z]][x] and clustered at an effectively separable, regular, and irre-
ducible contact tower (ℙi)i⩽t. We assume that −𝛾t+1 is larger than or equal to the smallest
slope of the Newton polygon of A. As before, a stands for the image Πt

−1(A) of A in ℙt,
whose degree in 𝜑t+1 is written l.

LEMMA 9.3. With the above notation, the following inequality holds:

valz(DiscxA)⩾ l d((((((((((v((((((((((d𝜑t+1
dx ))))))))))+v(a)−𝛾t+1)))))))))).

Proof. Poisson's formula for resultants yields

Resx((((((((((A(x), ∂A∂x (x)))))))))))= �
A(𝜓)=0

∂A
∂x (𝜓).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 71



Thanks to Lemma 5.7, we deduce:

valz((((((((((Resx((((((((((A(x), ∂A∂x (x)))))))))))))))))))))
⩾ valz((((((((((((((((((

((
(
( �
A(𝜓)=0

((((((((((d𝜑t+1
dx

∂a
∂𝜑t+1))))))))))(Ψ0(𝜓), . . . ,Ψt(𝜓))))))))))))))))))))

))
)
)

⩾ �
A(𝜓)=0

((((((((((v((((((((((d𝜑t+1
dx ))))))))))+v(((((((((( ∂a

∂𝜑t+1)))))))))))))))))))) (by Lemma 9.1)

⩾ �
A(𝜓)=0

((((((((((v((((((((((d𝜑t+1
dx ))))))))))+v(a)−𝛾t+1))))))))))

⩾ l d((((((((((v((((((((((d𝜑t+1
dx ))))))))))+v(a)−𝛾t+1)))))))))). □

Next, we considerA1 andA2monic in𝕂[[z]][x]. Let a1 and a2 stand for the canonical
representatives of A1 and A2 in ℙt, of respective degrees l1 and l2 in 𝜑t+1. In the sequel,
we define [𝜑t+1

0 ] a2 to be the constant coefficient of a2, when regarded as a univariate
polynomial in 𝜑t+1.

LEMMA 9.4. With the above notation, if the slopes of the Newton polygon of a1 are ⩽−𝛾t+1 and
the slopes of the Newton polygon of a2 are ⩾−𝛾t+1, then we have

valz(Resx(A1(x),A2(x)))⩾ l1dv([𝜑t+1
0 ] a2).

Proof. Again, we use Poisson's formula for the resultants:

Resx(A1(x),A2(x))=(−1)degxA1degxA2 �
A2(𝜓)=0

A1(𝜓).

It follows that

Resx(A1(x),A2(x))=(−1)degxA1degxA2 �
A2(𝜓)=0

a1(Ψ0(𝜓), . . . ,Ψt(𝜓)).

Let A2,1, . . . ,A2,k be the distinct-slope factors of A2 (as in Definition 7.11) and let a2,1, . . . ,
a2,k stand for their image in ℙt. We verify that:

valz(Resx(A1(x),A2(x))) = valz(((((((((((((( �
A2(𝜓)=0

a1(Ψ0(𝜓), . . . ,Ψt(𝜓))))))))))))))))
⩾ �

A2(𝜓)=0
valz(a1(Ψ0(𝜓), . . . ,Ψt(𝜓)))

= �
j=1

k

�
A2, j(𝜓)=0

valz(a1(Ψ0(𝜓), . . . ,Ψt(𝜓)))

⩾ �
j=1

k

�
A2, j(𝜓)=0

valz(Ψt(𝜓)l1)

⩾ l1�
j=1

k

�
A2, j(𝜓)=0

valz(Ψt(𝜓)).
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By Lemma 9.1, if 𝜓 is a root of A2, j then valz(Ψt(𝜓)) is larger or equal to the opposite of
the slope of the single edge of the Newton polygon of a2, j, that is

valz(Ψt(𝜓))⩾
v�[𝜑t+1

0 ] a2, j�
deg𝜑t+1 a2, j

.

It follows that

valz(Resx(A1(x),A2(x))) ⩾ l1�
j=1

k

degxA2, j
v�[𝜑t+1

0 ] a2, j�
deg𝜑t+1 a2, j

= l1d�
j=1

k

v([𝜑t+1
0 ] a2, j)

= l1dv([𝜑t+1
0 ] a2). (by Lemma 4.3) □

In the rest of the section, we study the precision loss encountered in each Newton
factorization. For a partial factorization A=A1A2 with monic A1 and A2, the following
well known formula will be used several times:

Discx(A1A2)=Discx(A1)Discx(A2)Resx(A1,A2)2. (9.1)

9.3. Precision loss during distinct-slope factorization
In the sequel 𝜎 represents the precision at which the irreducible factors of the input poly-
nomial are required. Let a in ℙt be given modulo O(z𝜏) with

𝜏⩾valz(Discx(A))+𝜎,

where A≔Πt(a). We assume that the Newton polygon of a has been computed. Fol-
lowing Definition 7.11, we let a1 stand for the product of factors of awith slopes ⩽−𝛾t+1
and let a2 stand for the product of factors of a with slopes >−𝛾t+1, hence a= a1 a2. Let
l1≔deg𝜑t+1 a1⩾1 and l2≔deg𝜑t+1 a2⩾1, let u1/z𝛿1 represent the normalized initial inverse
of a2.

According to Corollary 4.11, we may obtain a1 with precision O(z𝜏1), where

𝜏1≔𝜏−𝛿1=𝜏− ⌊v(a2)+dt𝛾t⌋.

Setting Ai≔Πt(ai) for i=1,2, equation (9.1) and Lemma 9.4 imply

valz(DiscxA1) = valz(Discx(A1A2))−valz(DiscxA2)−2valz(Resx(A1,A2))
⩽ valz(Discx(A1A2))−2valz(Resx(A1,A2))
⩽ 𝜏−𝜎−2d l1v(a2)
= 𝜏1+⌊v(a2)+dt𝛾t⌋−𝜎−2d l1v(a2)
⩽ 𝜏1−𝜎+(v(a2)+dt𝛾t−2 l1v(a2)).

Since l2⩾1 we have v(a2)=v([𝜑t+1
0 ] a2)⩾dt𝛾t, that yields

𝜏1⩾valz(Discx(A1))+𝜎.

We also compute a2with precisionO(z𝜏2), where 𝜏2≔𝜏1, and the same calculation yields

𝜏2⩾valz(Discx(A2))+𝜎.
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LEMMA 9.5. With the above notation, let a∈ℙt be given with precision O(z𝜏) such that

𝜏⩾valz(Discx(Πt(a)))+𝜎.

Then, Algorithm 7.1 computes truncations of the distinct slope factors a1, . . .,ar of a modulo some
O(z𝜏i) such that

𝜏⩾𝜏i⩾valz(Discx(Πt(ai)))+𝜎,
for i=1, . . . , r.

Proof. We apply the above precision analysis in the “divide and conquer” fashion used
in Algorithm 7.1. □

9.4. Precision loss during equal-slope factorization
Now we examine the precision loss during the equal-slope factorization. The input is a
polynomial a clustered at ℙt and which has a single slope −𝛾t+1 and known with preci-
sion O(z𝜏) such that

𝜏⩾valz(DiscxA)+𝜎.

Let a1, . . . , ar represent the equal slope factors of a as in Definition 7.15, and set li≔
deg𝜑t+1 ai. By Corollary 4.23 the contact polynomial ai can be computed with relative
precision O(z𝜏i) where

𝜏i≔𝜏−𝛿i and 𝛿i≔⌊v(a)−v(ai)+ li𝛾t+1⌋=⌊v(a)⌋

for i=1, . . . , r. Setting A≔Πt
−1(a) and Ai≔Πt

−1(ai) for i=1, . . . , r, Lemma 9.4 implies that

valz(Resx(A/Ai(x),Ai(x))) ⩾ (l− li)dv(ai)
= (l− li)d li𝛾t+1.

Since
2(l− li) li− l=((l− li) li− (l− li))+((l− li) li− li)=(l− li)(li−1)+ li (l− (li+1))⩾0

and 𝛿i⩽v(a), we obtain that
𝜏i⩾valz(DiscxAi)+𝜎,

for i=1, . . . , r.

LEMMA 9.6. With the above notation, let a∈ℙt be given with precision

𝜏⩾valz(Discx(A))+𝜎.

Then Algorithm 7.2 computes the equal-slope factors a1, . . . ,as modulo O(z𝜏i) such that

𝜏i⩾valz(Discx(Ai))+𝜎.

Proof. In fact Algorithm 7.2 computes the equal-slope factors of awith a precision higher
than the one requested here, but the above discussion leads to the lower bounds. □

9.5. Approximate irreducible factorization
We are now ready to prove Theorem 1.3. We assume that P∈𝕂[[z]][x] is monic and
separable of degree n in x and known modulo O(z𝜏) where 𝜏≔valz(Discx P)+𝜎. We
combine Theorem 1.1 with the above precision analyses.

74 APPROXIMATE CONTACT FACTORIZATION OF GERMS OF PLANE CURVES



Proof of Theorem 1.3. We apply Algorithm 8.2 with entry P∈𝕂[[z]][x]modulo O(z𝜏),
and with the trivial contact tower of height zero. The above precision analyses for the
intermediate steps of the contact factorization algorithm, namely Lemmas 9.5 and 9.6,
show by induction that all intermediate factors A of P occurring in the top level algo-
rithm are computed along with a contact tower (ℙi)i⩽t of degree d with precision O(z𝜏)
such that

𝜏⩾valz(DiscxA)+𝜎.

Such a factor is proved to be irreducible when it has degree one in 𝜑t+1. In this case, by
inequality (3.3), the coefficients of A are uniquely determined up to precision in z at least

valz(DiscxA)+𝜎− (d1−1)𝛾1− ⋅ ⋅ ⋅− (dt−1)𝛾t,
which equals

valz(DiscxA)+𝜎−v((((((((((d𝜑t+1
dx )))))))))),

by Lemma 5.4. On the other hand, Lemma 9.3 yields

valz(DiscxA)⩾v((((((((((d𝜑t+1
dx )))))))))),

so the precision of A is at least O(z𝜎) as claimed. Note that the central shift algorithm
does not produce factors, so it does not involve any loss of precision. □

10. CONCLUSION

The contact factorization presented in this paper is subject to further improvements.
A first research direction concerns the design of a contact factorization algorithm that
would not rely on univariate irreducible factorization, by using the directed evaluation
paradigm of [46] instead; so the computed contact towers would not be necessarily irre-
ducible any longer. Another research direction concerns the design of fast algorithms
for the contact coordinates in the vein of [45, 46]: we could avoid the conversions to
plain coordinates and their precision loss. Another research direction concerns fields
of small positive characteristic p>0.
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