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Abstract. Classically, the well-posedness of variational formulations of mixed linear problems is achieved
through the inf-sup condition. In this note, we propose an alternative framework to study such problems
by using the T-coercivity approach. This is a constructive approach that leads to the design of suitable
approximations in a simple way. In general, the derivation of the uniform discrete inf-sup condition for the
approximate problems stems straightforwardly from the study of the original problem. To support our view,
we solve a series of classical mixed problems with the T-coercivity approach. Among others, the celebrated
Fortin Lemma appears naturally in the numerical analysis of the approximate problems.

Résumé. Classiquement, le caractère bien posé des formulations variationnelles de problèmes linéaires
mixtes est obtenu à l’aide de la condition inf-sup. Dans cette note, nous proposons un cadre alternatif
pour étudier de tels problèmes en utilisant la notion de T-coercivité. Il s’agit d’une approche constructive
qui permet en outre de concevoir simplement des approximations numériques adaptées car la dérivation
de la condition inf-sup discrète uniforme découle en général directement de l’étude du problème continu.
Pour appuyer notre propos, nous résolvons une série de problèmes mixtes classiques grâce à la notion de T-
coercivité. Entre autres, le lemme de Fortin apparaît naturellement dans l’analyse numérique des problèmes
discrets.
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1. Introduction

Traditionally, the well-posedness of variational formulations of mixed linear problems is achieved
through the inf-sup condition, also called stability condition [2, 11, 34]. As a matter of fact,
proving this condition allows to derive existence and uniqueness of the solution, and continuous
dependence with respect to the data. On the other hand, the way this condition is established
depends on the problem to be solved. The analysis of such problems can be performed either
following a monolithic approach, namely studying the all-in-one bilinear form incorporating the
constraint, or by studying the constrained part of the problem separately.
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In this note, we focus on the monolithic approach and investigate the mixed problem’s well-
posedness based on the T-coercivity framework. The principle of this framework is to find an
explicit realization of the inf-sup condition for the all-in-one bilinear form. Of equal importance,
in the T-coercivity framework, is the design of suitable approximations of the original problem.
Indeed, with the help of the explicit realization of the condition for the original problem, one
can get useful insight on how to derive the so-called uniform discrete inf-sup condition for the
approximate, or discrete, problems set in finite-dimensional vector spaces. Thus, convergence
of the approximate solutions to the exact one follows under well-known principles in numerical
analysis, such as Céa’s Lemma (or a variant), and a basic approximability property of elements of
the original space of solutions. To summarize, although the T-coercivity approach may not bring
new result to the theory of variational formulations, it proposes an entirely constructive way to
study them theoretically and also on how to approximate them efficiently.

So far, the T-coercivity approach has been mainly applied to two categories of lin-
ear problems. First, for problems involving an invertible operator and a compact per-
turbation, see eg. [12–14, 20, 30, 37]. Then, for problems with sign-changing coefficients,
cf. [5–10, 15–19, 21, 23, 29, 36]. For the second category, we observe that well-posedness and
(efficient) approximation of the variational formulations has actually been achieved with the
help of the T-coercivity approach. Up to the authors’ knowledge, this approach was only applied
to mixed problems in [31, 33]: in the first reference, it is applied to the specific case of neutron
diffusion, whereas the second one focuses on perturbed saddle-point problems.

In this note, we apply the T-coercivity approach to general mixed problems, including unper-
turbed and perturbed saddle-point problems. In particular, we will explain the connections with
the classical theory, for which we use [4] as the reference textbook. Among those connections,
we note that the celebrated Fortin Lemma will appear naturally in the (numerical) analysis of the
discrete problems.

Let us introduce some notations. Given a Hilbert space V , we denote by (·, ·)V and ‖ · ‖V the
scalar product and the norm on V , and by V ′ its dual space. In a product space V ×W , we use the
norm

‖(v, w)‖V ×W = (‖v‖2
V +‖w‖2

W

)1/2,

and similarly for the scalar product. Vector-valued function spaces are written in boldface char-
acter. A connected, bounded, open subset of Rd with a Lipschitz boundary is called a domain.

LetΩ be a domain with boundary ∂Ω. We denote by n the unit outward normal vector field to
∂Ω. Let L2(Ω) and L2(Ω) be the set of square-integrable real-valued and Rd -valued functions on
Ω. The natural norm in L2(Ω) or L2(Ω) is denoted by ‖ ·‖, and we let

L2
0(Ω) =

{
v ∈ L2(Ω) ,

∫
Ω

v dx = 0
}

.

In what follows, unless otherwise stated, the standard Sobolev space H 1
0 (Ω) is endowed with the

norm v 7→ ‖∇v‖, that defines a norm that is equivalent to ‖·‖H 1(Ω) thanks to Poincaré’s inequality.
The dual space of H 1

0 (Ω) is denoted by H−1(Ω). Similarly, H 1
0(Ω) is endowed with the norm

v 7→ (∑
i=1,d ‖∇vi‖2

)1/2, that defines a norm that is equivalent to ‖ · ‖H 1(Ω), and its dual space
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is denoted by H−1(Ω). We introduce the usual Sobolev spaces for vector-valued fields [1]

H(div ;Ω) = {
v ∈ L2(Ω), div v ∈ L2(Ω)

}
,

H 0(div ;Ω) = {
v ∈ H(div ;Ω), v ·n = 0 on ∂Ω

}
,

H(div0;Ω) = {
v ∈ H(div ;Ω), div v = 0

}
,

H(curl ;Ω) = {
v ∈ L2(Ω), curl v ∈ L2(Ω)

}
, for d = 3,

H 0(curl ;Ω) = {
v ∈ H(curl ;Ω), v ×n = 0 on ∂Ω

}
, for d = 3.

Unless otherwise specified, H(div ;Ω) is endowed with the norm v 7→ (‖v‖2 +‖div v‖2
)1/2 and

H(curl ;Ω) with the norm v 7→ (‖v‖2 +‖curl v‖2
)1/2.

The outline is as follows. In Section 2, we introduce the T-coercivity approach, and explain
how it can be applied to solve the Stokes problem theoretically. Then, in Section 3, we develop
the abstract framework underlying the approach for mixed problems, including saddle-point,
augmented and perturbed ones. In Sections 4, 5 and 6, we propose some applications, respec-
tively to electromagnetism, nearly-incompressible elasticity, and diffusion. Then, in Section 7,
we propose the natural extension of the T-coercivity approach for the conforming approxima-
tion of mixed problems. As before, we begin by the Stokes problem, then we consider the nu-
merical analysis for mixed problems in general, before describing how the approach can be ap-
plied to electromagnetism, nearly-incompressible elasticity, and diffusion. We conclude by a list
of further extensions and recent applications of the T-coercivity approach.

2. T-coercivity for the Stokes problem

The starting point of our study is to propose a T-coercivity approach to solve Stokes problem. Let
Ω ⊂ Rd be a domain. We consider the Stokes problem with homogeneous Dirichlet boundary
conditions: given a prescribed body force f ∈ H−1(Ω), find the velocity u ∈ H 1(Ω) and the
pressure p ∈ L2

0(Ω) such that
−ν∆u +∇p = f , inΩ,

divu = 0, inΩ,

u = 0, on ∂Ω,

(1)

where ν> 0 denotes the fluid’s viscosity.
The standard method to solve Problem (1) – see [27] – consists in a one-plus-one approach.

The problem is split into a coercive part

a(u, v ) = ν
∫
Ω
∇u : ∇v dx

and divergence constraint terms of the form

b(v , q) =−
∫
Ω

q div v dx,

so that the weak formulation of Problem (1) reads: find (u, p) ∈ H 1
0(Ω)×L2

0(Ω) such that

a(u, v )+b(v , p) = 〈 f , v〉, ∀v ∈ H 1
0(Ω),

b(u, q) = 0, ∀q ∈ L2
0(Ω),

(2)

where 〈·, ·〉 denotes the duality product in H 1
0(Ω). The well-posedness of Problem (2) then follows

from Ladyzhenskaya–Babuška–Brezzi’s theory [2, 11, 34] since the bilinear form a is coercive on
H 1

0(Ω) and the bilinear form b satisfies the inf-sup condition

inf
q∈L2

0(Ω)\{0}
sup

v∈H 1
0(Ω)\{0}

b(v , q)

‖∇v‖‖q‖ ≥β (3)
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for some constant β> 0.
Here, we are going to give an alternative proof that Problem (1) is well-posed by analysing the

all-in-one bilinear form defined on H 1
0(Ω)×L2

0(Ω)

A
(
(u, p), (v , q)

)= ν∫
Ω
∇u : ∇v dx −

∫
Ω

p div v dx −
∫
Ω

q divu dx

instead of splitting it into two bilinear forms a and b as in (2). This bilinear form is not coercive
since

A
(
(0, p), (0, p)

)= 0, ∀p ∈ L2
0(Ω).

For this reason, we use the notion of T-coercivity [19,20], which can be seen as a reformulation of
Banach-Nečas-Babuška’s theory. The definition and the main property of T-coercivity are recalled
below.

Definition 1. Let W be a Hilbert space and let A (·, ·) be a continuous bilinear form over W ×W .
We say that A is T-coercive if there exists a bijective operator T ∈L (W ) and α> 0 such that

|A (u,Tu)| ≥α‖u‖2
W , ∀u ∈W.

Proposition 2. Let W be a Hilbert space. Let `(·) be a continuous linear form over W and A (·, ·)
be a continuous bilinear form over W ×W . The problem{

Find u ∈W such that

∀v ∈W, A (u, v) = `(v)

is well-posed if and only if A is T-coercive. If so, it holds that

‖u‖W ≤ C`

α
|||T|||, (4)

with C` the continuity constant of the linear form `. When the bilinear form A (·, ·) is in addition
symmetric, the requirement that the operator T is bijective can be dropped.

2.1. Proving well-posedness with T-coercivity

With the T-coercivity tool in mind, we are now ready to establish the main result of this section.

Theorem 3. The problem{
Find (u, p) ∈ H 1

0(Ω)×L2
0(Ω) such that

∀(v , q) ∈ H 1
0(Ω)×L2

0(Ω), A
(
(u, p), (v , q)

)= 〈 f , v〉 (5)

is well-posed and

‖(u, p)‖H 1
0(Ω)×L2

0(Ω) ≤
2max

(p
2νC 2

div,Cdiv
(
2+ν2C 2

div

)1/2
)

min(ν2C 2
div,1)

‖ f ‖H−1(Ω). (6)

Proof. The linear form defined by

`
(
(v , q)

)= 〈 f , v〉, ∀(v , q) ∈ H 1
0(Ω),×L2

0(Ω)

is continuous over H 1
0(Ω)×L2

0(Ω) in view of the inequality

`
(
(v , q)

)≤ ‖ f ‖H−1(Ω)‖(v , q)‖H 1
0(Ω)×L2

0(Ω). (7)

The bilinear form A is continuous over
(

H 1
0(Ω)×L2

0(Ω)
)2 and we observe that it is also symmetric.

Then, from Proposition 2, it is sufficient to show that the bilinear form A is T-coercive. For
a given (u, p) ∈ H 1

0(Ω) × L2
0(Ω), we look for an element (v∗, q∗) of H 1

0(Ω) × L2
0(Ω) depending

continously on (u, p) and such that

A
(
(u, p), (v∗, q∗)

)≥α‖(u, p)‖2
H 1

0(Ω)×L2
0(Ω)
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for some constantα> 0. In order to get an intuitive idea of the construction of (v∗, q∗), let us start
with specific elements (u, p).

• If p = 0, then ‖(u, p)‖2
H 1

0(Ω)×L2
0(Ω)

= ‖∇u‖2 and

A
(
(u, p), (v∗, q∗)

)= ν∫
Ω
∇u : ∇v∗ dx −

∫
Ω

divu q∗ dx,

so that we can take v∗ = u and q∗ = p = 0.

• If u = 0, then ‖(u, p)‖2
H 1

0(Ω)×L2
0(Ω)

= ‖p‖2 and

A
(
(u, p), (v∗, q∗)

)=−
∫
Ω

p div v∗ dx.

In order to recover the expected term ‖p‖2 in the above expression, we have to choose
v∗, the divergence of which is "as close as possible" to p. To that aim, we use the result
below, see for instance [27, Corollary I.2.4]. Let p ∈ L2

0(Ω). Then, there exists v p ∈ H 1
0(Ω)

satisfying
− div v p = p. (8)

In addition, there exists a constant Cdiv > 0 independent of p such that

‖∇v p‖ ≤Cdiv‖p‖. (9)

The idea is now to choose v∗ = v p , where v p is as in (8)-(9). Hence, taking q∗ = 0, we find

A
(
(u, p), (v∗, q∗)

)= ‖p‖2,

and (9) ensures that the pair (v p ,0) depends continously on (0, p) in H 1
0(Ω)×L2

0(Ω).

• If divu = 0, then

A
(
(u, p), (v∗, q∗)

)= ν∫
Ω
∇u : ∇v∗ dx −

∫
Ω

p div v∗ dx.

Since we need to get a term of the form ‖∇u‖2 but also of the form ‖p‖2, we combine the
previous two cases by setting v∗ =λu+v p , whereλ is a positive coefficient to be adjusted
and v p is the divergence lifting from (8) – (9). Now, we compute

A
(
(u, p), (v∗, q∗)

)= νλ

∫
Ω
∇u : ∇u dx +ν

∫
Ω
∇u : ∇v p dx −λ

∫
Ω

p divu dx −
∫
Ω

p div v p dx

= νλ‖∇u‖2 +ν
∫
Ω
∇u : ∇v p dx +‖p‖2

since divu = 0 and −div v p = p. For all η> 0, Young’s inequality implies that∫
Ω
∇u : ∇v p dx ≥−η

2
‖∇u‖2 − 1

2η
‖∇v p‖2

≥−η
2
‖∇u‖2 − C 2

div

2η
‖p‖2 in virtue of (9),

and thus

A
(
(u, p), (v∗, q∗)

)≥ ν(
λ− η

2

)
‖∇u‖2 +

(
1− νC 2

div

2η

)
‖p‖2.

Hence, by setting η=λ= νC 2
div, we obtain

A
(
(u, p), (v∗, q∗)

)≥ ν2C 2
div

2
‖∇u‖2 + 1

2
‖p‖2.

Note that this result holds for any q∗ ∈ L2
0(Ω) depending continously on p.
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In the general case, we choose v∗ = λu + v p with λ = νC 2
div and q∗ = −λp so that, even if

divu 6= 0, the term −λ∫
Ω p divu dx cancels with the term −∫

Ωdivu q∗ dx and we get the same
results as in the case divu = 0. Namely, the bilinear form A is T-coercive for the mapping

T : H 1
0(Ω)×L2

0(Ω) −→ H 1
0(Ω)×L2

0(Ω)

(u, p) 7−→ (
νC 2

divu +v p ,−νC 2
divp

)
,

where v p is defined by (8) with estimate (9), and it holds that

A
(
(u, p),T(u, p)

)≥ ν2C 2
div

2
‖∇u‖2 + 1

2
‖p‖2 ≥ 1

2
min(ν2C 2

div,1)‖(u, p)‖2
H 1

0(Ω)×L2
0(Ω)

. (10)

Thanks to (8)-(9), T belongs to L (H 1
0(Ω)×L2

0(Ω)). More precisely, we have

‖T(u, p)‖2
H 1

0(Ω)×L2
0(Ω)

= ‖νC 2
divu +v p‖2

H 1
0(Ω)

+‖νC 2
divp‖2

≤ 2(νC 2
div)2‖∇u‖2 +2‖∇v p‖2 + (νC 2

div)2‖p‖2

≤ 2(νC 2
div)2‖∇u‖2 + (

2C 2
div + (νC 2

div)2)‖p‖2

and thus
|||T||| ≤ max

(p
2νC 2

div,Cdiv
(
2+ν2C 2

div

)1/2
)
. (11)

Using (7), (10) and (11) in the stability estimate (4), we finally obtain (6). �

Remark 4. The previous result readily extends to the case of a non-null divergence constraint

−ν∆u +∇p = f , inΩ,

divu = g , inΩ,

u = 0, on ∂Ω,

with g ∈ L2
0(Ω), leading to the stability estimate

‖(u, p)‖H 1
0(Ω)×L2

0(Ω) ≤
2max

(p
2νC 2

div,Cdiv
(
2+ν2C 2

div

)1/2
)

min(ν2C 2
div,1)

‖( f , g )‖H−1(Ω)×L2
0(Ω). (12)

2.2. Comments

The stability estimates (6) and (12) are valid for all Cdiv that fulfills (9). On the other hand, one has

lim
Cdiv→∞

2max
(p

2νC 2
div,Cdiv

(
2+ν2C 2

div

)1/2
)

min(ν2C 2
div,1)

=+∞,

i.e. the stability estimates become meaningless for large Cdiv.
Going through the proof of Theorem 3, we observe that the constant obtained in (6) and (12)

is just one of the many bounds one can achieve with T-coercivity for the Stokes problem. Indeed,
one can choose any positive value of λ: hence, there exists a family of admissible operators T, in
the sense of Definition 1, which shows the flexibility of the approach.

Let us provide an illustration. For small viscosity ν (the domainΩ being fixed), it is well-known
that the stability constant appearing in the estimate

‖(u, p)‖H 1
0(Ω)×L2

0(Ω) ≤C (ν)‖( f , g )‖H−1(Ω)×L2
0(Ω)

behaves likes O(ν−1). For instance, for the velocity u, the result is elementarily obtained by taking
the test field (v , q) = (u, p) in (2). On the other hand, in (6) and (12), we find a behavior in O(ν−2).
But, if one is interested in obtaining a less severe blowup, one can simply choose

η= νC 2
div

2(1− ν
2 )

and λ= 1

2
(1+η)
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in the above proof, for all 0 < ν≤ 1. Then, one finds that

α= ν

2
and |||T||| ≤ max

( 1p
2

(1+C 2
div),

(
2C 2

div +
1

4
(1+C 2

div)2)1/2
)
,

so that (4) actually yields a stability constant in O(ν−1).

Theorem 3 provides a fully constructive proof for the well-posedness of Stokes problem, which
is an emblematic example of mixed problem. In the next section, we show that the T-coercivity
approach employed here is in fact very general and can be extended to a large class of saddle-
point problems.

3. Abstract framework

We start with the classical statements regarding the definition of saddle-point problems, and
the equivalent conditions to ensure an inf-sup condition. Then, we proceed with the design of
abstract operators T to ensure well-posedness for saddle-problems, and for augmented saddle-
point problems.

3.1. Saddle-point problems in Hilbert spaces

Let V and Q be two Hilbert spaces. In the Hilbert space Q, we introduce the canonical isomor-
phism 1Q→Q ′ : Q →Q ′ defined by

〈1Q→Q ′p, q〉Q ′,Q = (p, q)Q , ∀p ∈Q, ∀q ∈Q,

which is a bijective isometry according to Riesz Theorem. As a matter of fact, its inverse 1Q ′→Q is
also a bijective isometry, and

(1Q ′→Q g , q)Q = 〈g , q〉Q ′,Q , ∀g ∈Q ′, ∀q ∈Q.

We then introduce two bilinear forms a(·, ·) on V ×V and b(·, ·) on V ×Q that are assumed to
be continuous, i.e. there exist Ca > 0 and Cb > 0 such that

a(u, v) ≤Ca‖u‖V ‖v‖V , ∀u ∈V ,∀v ∈V , (13)

b(v, q) ≤Cb‖v‖V ‖q‖Q , ∀v ∈V ,∀q ∈Q. (14)

We denote by A and B the linear continuous operators associated with a and b, defined by

A ∈L (V ,V ′), 〈Au, v〉V ′,V = a(u, v), ∀u ∈V ,∀v ∈V ,

B ∈L (V ,Q ′), 〈B v, q〉Q ′,Q = b(v, q), ∀v ∈V ,∀q ∈Q.

The adjoint operator of B is given by

B∗ ∈L (Q,V ′), 〈B∗q, v〉V ′,V = 〈B v, q〉Q ′,Q = b(v, q), ∀v ∈V ,∀q ∈Q.

Given f ∈V ′ and g ∈Q ′, we consider the saddle-point problem: find (u, p) ∈V ×Q such that

Au +B∗p = f , in V ′,
Bu = g , in Q ′.

(15)

Or, equivalently, in variational form:
Find (u, p) ∈V ×Q such that

∀v ∈V , a(u, v)+b(v, p) = 〈 f , v〉V ′,V ,

∀q ∈Q, b(u, q) = 〈g , q〉Q ′,Q .

(16)
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8 Mathieu Barré and Patrick Ciarlet

As for the Stokes problem, we write Problem (15) as an all-in-one variational formulation{
Find (u, p) ∈V ×Q such that

∀(v, q) ∈V ×Q, A
(
(u, p), (v, q)

)= 〈 f , v〉V ′,V +〈g , q〉Q ′,Q ,
(17)

where

A
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q).

In what follows, we show that Problem (17) is well-posed using the notion of T-coercivity, with
slightly different techniques depending on the assumptions made on the bilinear form a.

Regarding the form b(·, ·) and the operator B , one has the well-known result below, see for
instance [27, Lemma I.4.1]1, which can be viewed as a reformulation of Banach’s Closed Range
Theorem.

Theorem 5. The following three statements are equivalent:

(i) There exists β> 0 such that

inf
q∈Q\{0}

sup
v∈V \{0}

b(v, q)

‖v‖V ‖q‖Q
≥β. (18)

(ii) B : (KerB)⊥ →Q ′ is an isomorphism, and

‖B v‖Q ′ ≥β‖v‖V , ∀v ∈ (KerB)⊥.

(iii) There exists an isomorphic operator LB : Q ′ → (KerB)⊥ such that

B(LB g ) = g and ‖g‖Q ′ ≥β‖LB g‖V , ∀g ∈Q ′.

Since our aim is to build operators T from V ×Q to itself, we first introduce the operator

B= 1Q ′→Q ◦B : V →Q.

For all v ∈V , ‖B v‖Q ′ = ‖1Q ′→Q (B v)‖Q = ‖Bv‖Q and, for all (v, q) ∈V ×Q,

b(v, q) = 〈B v, q〉Q ′,Q = 〈1Q→Q ′ (Bv), q〉Q ′,Q = (Bv, q)Q .

Whenever applicable, we also introduce its right-inverse

LB = LB ◦ 1Q→Q ′ : Q → (KerB)⊥.

Observe that

b(LB p, q) = 〈BLB p, q〉Q ′,Q = 〈1Q→Q ′p, q〉Q ′,Q = (p, q)Q , ∀p ∈Q, ∀q ∈Q. (19)

Under these notations, items (ii)-(iii) of Theorem 5 now write

(ii) B : (KerB)⊥ →Q is an isomorphism, and

‖Bv‖Q ≥β‖v‖V , ∀v ∈ (KerB)⊥. (20)

(iii) There exists an isomorphic operator LB : Q → (KerB)⊥ such that

B(LB q) = q and ‖q‖Q ≥β‖LB q‖V , ∀q ∈Q. (21)

For convenience, we often use β=β−1, so that

‖LB q‖V ≤β‖q‖Q , ∀q ∈Q.

1Item (iii) below is a rephrasing of the original statement, because it is better suited for our purposes. For details, see
the proof of Lemma I.4.1. of [27] p. 59, item 2°. The operator LB is a right-inverse of the operator B .
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3.2. How to achieve T-coercivity for saddle-point problems?

If a is coercive on the whole space V , we can extend the proof of Theorem 3 in the following way.

Theorem 6. Assume that (18) holds true and that the form a is symmetric and positive. If there
exists a constant α> 0 such that

a(u,u) ≥α‖u‖2
V , ∀u ∈V , (22)

then there exists a unique solution to Problem (17) and

‖(u, p)‖V ×Q ≤
2max

(p
2Caβ

2,β
(
2+C 2

aβ
2
)1/2

)
min(αCaβ2,1)

‖( f , g )‖V ′×Q ′ . (23)

Proof. First, we note that the symmetry of the bilinear form a implies that A is also symmetric.
Then, we follow the same ideas as in the proof of Theorem 3, replacing v p by LB p. We introduce
the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
λu +LB p,−λp

)
and we compute

A
(
(u, p),T(u, p)

)= a(u,λu)+a(u,LB p)+b(λu, p)+b(LB p, p)−b(u,λp)

=λa(u,u)+a(u,LB p)+‖p‖2
Q ,

in view of (19).
Because the form a is symmetric and positive, we can apply Young’s inequality: for any η> 0,

a(u,LB p) ≥−η
2

a(u,u)− 1

2η
a(LB p,LB p).

Taking into account (13) and (21), the latter being equivalent to (18), we get

a(LB p,LB p) ≤Ca‖LB p‖2
V ≤Caβ

2‖p‖2
Q

and thus

a(u,LB p) ≥−η
2

a(u,u)− Caβ
2

2η
‖p‖2

Q .

Hence, recalling (22), if λ− η
2 > 0 it follows that

A
(
(u, p),T(u, p)

)≥α(
λ− η

2

)
‖u‖2

V +
(
1− Caβ

2

2η

)
‖p‖2

Q .

Setting in particular η=λ=Caβ
2, we infer that

A
(
(u, p),T(u, p)

)≥αCaβ
2

2
‖u‖2

V + 1

2
‖p‖2

Q ≥ 1

2
min(αCaβ

2,1)‖(u, p)‖2
V ×Q , (24)

which proves that A is T-coercive.
Since T(u, p) = (Caβ

2u +LB p,−Caβ
2p), it holds that

‖T(u, p)‖2
V ×Q = ‖Caβ

2u +LB p‖2
V +‖Caβ

2p‖2
Q

≤ 2(Caβ
2)2‖u‖2

V +2‖LB p‖2
V + (Caβ

2)2‖p‖2
Q

≤ 2(Caβ
2)2‖u‖2

V + (
2β2 + (Caβ

2)2)‖p‖2
Q ,

which yields

|||T||| ≤ max
(p

2Caβ
2,β

(
2+C 2

aβ
2)1/2

)
. (25)

Lastly, we observe that

〈 f , v〉V ′,V +〈g , q〉Q ′,Q ≤ ‖( f , g )‖V ′×Q ′‖(v, q)‖V ×Q . (26)
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Combining (24), (25) and (26), the stability estimate (4) furnishes exactly (23). �

Remark 7. By applying Theorem 6 to Stokes problem, we recover stability estimates (6) and (12)
from the correspondence α= ν, Ca = ν and β=Cdiv.

In Ladyzhenskaya–Babuška–Brezzi’s theory and in many applications, the bilinear form a is
not coercive on the whole space V but only on the kernel of the operator B. This is for instance
the case in electromagnetism, which will be detailed in Section 4. The next result shows how to
address this situation in the T-coercivity framework (provided that the form a is symmetric and
positive), thus establishing the equivalence between the two theories.

Theorem 8. Assume that the form a is symmetric and positive.
1. If (18) holds true, and if there exists a constant α0 > 0 such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB, (27)

then the form A is T-coercive. In other words, Problem (17) is well-posed and

‖(u, p)‖V ×Q ≤C‖( f , g )‖V ′×Q ′ , (28)

with C a constant depending only on α0, β, Ca and Cb .
2. Conversely, if Problem (17) is well-posed, that is, if the form A is T-coercive, then (18) and (27)
both hold.

Proof. 1. We consider the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
λu +LB p,−λp +λµBu

)
.

This is almost the same mapping as the one used in the proof of Theorem 6. The only difference
is the term λµBu, which is going to help us handling the extra terms that do not belong to the
kernel of B by adjusting the value of the constant µ. We get

A
(
(u, p),T(u, p)

)= a(u,λu)+a(u,LB p)+b(λu, p)+b(LB p, p)−b(u,λp)+b(u,λµBu)

=λa(u,u)+a(u,LB p)+‖p‖2
Q +λµ‖Bu‖2

Q

because b(LB p, p) = ‖p‖2
Q as previously, and

b(u,Bu) = 〈
Bu,Bu

〉
Q ′,Q = (

1Q ′→Q (Bu),Bu
)

Q = ‖Bu‖2
Q .

Since the form a is symmetric and positive, one may use Young’s inequality. By proceeding as
in the proof of Theorem 6 and after setting λ=Caβ

2, we know that

λa(u,u)+a(u,LB p)+‖p‖2
Q ≥ Caβ

2

2
a(u,u)+ 1

2
‖p‖2

Q ,

from which we deduce

A
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
a(u,u)+2µ‖Bu‖2

Q

)+ 1

2
‖p‖2

Q .

To compensate the lack of coercivity of a outside KerB, we use the decomposition u = u0 + ū
with u0 ∈ KerB and ū ∈ (KerB)⊥. Following [4, p. 254], Young’s inequality yields

a(u,u) = a(u0,u0)+2a(u0, ū)+a(ū, ū)

≥ (1−θ)a(u0,u0)+
(
1− 1

θ

)
a(ū, ū)

≥ (1−θ)a(u0,u0)+
(
Ca − Ca

θ

)
‖ū‖2

V
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for all 0 < θ < 1. Since u0 ∈ KerB, we have ‖Bu‖2
Q = ‖Bū‖2

Q . Moreover, using (20) yields ‖Bū‖2
Q ≥

β−2‖ū‖2
V . Thus

a(u,u)+2µ‖Bu‖2
Q ≥ (1−θ)a(u0,u0)+

(
Ca − Ca

θ
+ 2µ

β2

)
‖ū‖2

V . (29)

Choosing θ = 1
2 and µ= 3

4Caβ
2, it holds that

a(u,u)+2µ‖Bu‖2
Q ≥ 1

2
a(u0,u0)+ Ca

2
‖ū‖2

V .

Hence, recalling (27) and using the inequality Ca ≥α0, we obtain

a(u,u)+2µ‖Bu‖2
Q ≥ α0

2
‖u0‖2

V + α0

2
‖ū‖2

V = α0

2
‖u‖2

V

and we conclude that

A
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V + 1

2
‖p‖2

Q . (30)

From the above, we have

T(u, p) = (
Caβ

2u +LB p,−Caβ
2p + 3

4
(Caβ

2)2Bu
)
.

Finally, T belongs to L (V ×Q) since ‖LB p‖V ≤β‖p‖Q (see (21)) and2

‖Bu‖Q ≤Cb‖u‖V . (31)

The stability estimate (28) is then given by (4).

2. Conversely, suppose that there exist αV > 0, αQ > 0 and T ∈L (V ×Q) such that

A
(
(u, p),T(u, p)

)≥αV ‖u‖2
V +αQ‖p‖2

Q , ∀(u, p) ∈V ×Q. (32)

Noting T : (u, p) 7→ (
TV (u, p),TQ (u, p)

)
, we have

A
(
(u, p),T(u, p)

)= a
(
u,TV (u, p)

)+b
(
TV (u, p), p

)+b
(
u,TQ (u, p)

)
and, since T is bounded,

‖TV (u, p)‖2
V +‖TQ (u, p)‖2

Q ≤ |||T|||2(‖u‖2
V +‖p‖2

Q

)
. (33)

Now, choosing u = 0 in (32) and (33) yields

b
(
TV (0, p), p

)≥αQ‖p‖2
Q and ‖TV (0, p)‖V ≤ |||T||| · ‖p‖Q , ∀p ∈Q.

Thus, for p ∈Q \{0}, TV (0, p) 6= 0, otherwise b
(
TV (0, p), p

)= 0, which contradicts b
(
TV (0, p), p

)> 0.
Then it follows that

sup
v∈V \{0}

b(v, p)

‖v‖V
≥ b

(
TV (0, p), p

)
‖TV (0, p)‖V

≥ αQ

|||T||| ‖p‖Q , ∀p ∈Q \ {0},

which shows that the inf-sup condition (18) is fulfilled. Likewise, taking p = 0 and u ∈ KerB in (32)
and (33), we get

a
(
u,TV (u,0)

)≥αV ‖u‖2
V and ‖TV (u,0)‖V ≤ |||T|||‖u‖V , ∀u ∈ KerB.

By symmetry and positivity of a, it holds that

a
(
u,TV (u,0)

)≤ (
a(u,u)

)1/2a
(
TV (u,0),TV (u,0)

)1/2.

2Classically,

‖Bu‖2
Q = (Bu,Bu)Q = 〈1Q→Q′ (Bu),Bu〉Q′ ,Q by definition of 1Q→Q′ ,

= 〈1Q→Q′ ◦ 1Q′→Q (Bu),Bu〉Q′ ,Q = 〈Bu,Bu〉Q′ ,Q since 1Q→Q′ ◦ 1Q′→Q = IdQ′ ,

= b(u,Bu) ≤Cb‖u‖V ‖Bu‖Q by definition and continuity of b (14).
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Thus

αV ‖u‖2
V ≤ a

(
u,TV (u,0)

)≤ (
a(u,u)

)1/2(Ca |||T|||2‖u‖2
V

)1/2

and hence a(u,u) ≥ α2
V

Ca |||T|||2 ‖u‖2
V for all u ∈ KerB, which proves (27). �

Remark 9. The T-coercivity estimate (30) is very close to the case where a is coercive on the
whole space V . As a matter of fact, the only difference compared to (24) is that the constant before
the term ‖u‖2

V is twice as small, with α0 =α.

3.3. Augmented saddle-point problems

Let c(·, ·) be a positive and continuous bilinear form defined on Q ×Q, namely

c(p, p) ≥ 0, ∀p ∈Q and ∃Cc > 0, c(p, q) ≤Cc‖p‖Q‖q‖Q , ∀p ∈Q,∀q ∈Q. (34)

We denote by C the linear operator associated with the bilinear form c, defined by

C ∈L (Q,Q ′), 〈C p, q〉Q ′,Q = c(p, q), ∀p ∈Q,∀q ∈Q.

The all-in-one approach developed previously also enables us to deal with augmented saddle-
point problems: given f ∈V ′ and g ∈Q ′, find (u, p) ∈V ×Q such that

Au +B∗p = f , in V ′,
Bu −C p = g , in Q ′,

(35)

where the operator C possibly acts as a small perturbation of the original saddle-point problem
(15). The weak formulation of (35) reads:{

Find (u, p) ∈V ×Q such that

∀(v, q) ∈V ×Q, Ac
(
(u, p), (v, q)

)= 〈 f , v〉V ′,V +〈g , q〉Q ′,Q ,
(36)

with

Ac
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q)− c(p, q).

As before, the bilinear form a is supposed to be symmetric and positive.

3.4. How to achieve T-coercivity for augmented saddle-point problems?

Once again, we distinguish the case where the form a is coercive on V or only on KerB. If the form
a is coercive on V , the results from the un-augmented case allow straightforwardly to handle the
augmented one.

Theorem 10. Assume that (18) holds true and that the form a is symmetric and positive. If there
exists a constant α> 0 such that

a(u,u) ≥α‖u‖2
V , ∀u ∈V ,

then there exists a unique solution to Problem (36).

Proof. With the same operator T as for the un-augmented problem, namely

T : V ×Q −→V ×Q

(u, p) 7−→ (
Caβ

2u +LB p,−Caβ
2p

)
,

it holds that

Ac
(
(u, p),T(u, p)

)=Caβ
2a(u,u)+a(u,LB p)+‖p‖2

Q +Caβ
2c(p, p).
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Therefore, a similar argument as in Theorem 6 furnishes

Ac
(
(u, p),T(u, p)

)≥αCaβ
2

2
‖u‖2

V + 1

2
‖p‖2

Q +Caβ
2c(p, p),

which shows that Ac is T-coercive since c is positive. �

Remark 11. A particular case that appears in many applications – see Section 5 for the example
of nearly-incompressible elasticity – is when c has the form

c(p, q) = ε(p, q)Q , ε≥ 0.

In this case, we obtain the estimate

Ac
(
(u, p),T(u, p)

)≥αCaβ
2

2
‖u‖2

V +
(

1

2
+εCaβ

2
)
‖p‖2

Q , (37)

so that the augmentation c improves the constant before the term ‖p‖2
Q and thus stabilizes the

bilinear form Ac . Moreover, the above estimate is robust for small values of ε. Besides, it even
allows to take negative values of ε. Indeed, if ε< 0, we have

Ac
(
(u, p),T(u, p)

)≥αCaβ
2

2
‖u‖2

V +
(

1

2
−|ε|Caβ

2
)
‖p‖2

Q .

Hence, the bilinear form Ac remains T-coercive whenever |ε| < 1
2Caβ2 .

Let us now suppose that a is not coercive on the whole space V but only on the kernel of B.
Then, two different situations occur. Either the form c can be viewed as a small perturbation, and
we shall look for a solution of (35) that is close to the solution of the original problem (15). Or
this is not the case, and the form c is viewed as a “fixed” augmentation, and there is no obvious
connection a priori between the solutions of the augmented and un-augmented problems.

3.5. Additional results for small perturbations

We say that c is a small perturbation if it can be written as

c(p, q) = εc0(p, q), ε> 0, (38)

with ε a small parameter and c0 a symmetric, positive and continuous form on Q. We start with
the simple case

c(p, q) = ε(p, q)Q , ε> 0, (39)

for which the T-coercivity approach yields a shorter proof than the corresponding result stated in
Ladyzhenskaya–Babuška–Brezzi’s framework, see [4, pages 247-252].

Theorem 12. Assume that (18) holds true, that the form a is symmetric and positive, and that c
takes the simple form of (39). If there exists a constant α0 > 0 such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB, (40)

and if ε is small enough, namely

ε≤ 1

2Caβ4C 2
b

(
2− α0

Ca

)
, (41)

then Problem (36) is well-posed and

‖(u, p)‖V ×Q ≤C‖( f , g )‖V ′×Q ′ , (42)

with C a constant depending only on α0, β, Ca and Cb .
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Proof. Here again, we consider the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
λu +LB p,−λp +λµBu

)
.

The beginning of the proof is the same as in Theorem 8. Taking into account the extra terms
coming from the perturbation, we get

Ac
(
(u, p),T(u, p)

)=λa(u,u)+a(u,LB p)+‖p‖2
Q +λµ‖Bu‖2

Q ′ +λc(p, p)−λµc(p,Bu).

Using Young’s inequality and setting λ=Caβ
2, it follows that

Ac
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
a(u,u)+2µ‖Bu‖2

Q ′
)+ 1

2
‖p‖2

Q +Caβ
2c(p, p)−Caβ

2µc(p,Bu). (43)

Now, as in (29), it holds that

a(u,u)+2µ‖Bu‖2
Q ′ ≥ (1−θ)a(u0,u0)+

(
Ca − Ca

θ
+ 2µ

β2

)
‖ū‖2

V (44)

for all 0 < θ < 1, where u = u0 + ū with u0 ∈ KerB and ū ∈ (KerB)⊥.
Knowing that c(p, q) = ε(p, q)Q for all p and q in Q, Young’s inequality implies that, for all δ> 0,

−c(p,Bu) =−c(p,Bū) =−ε(p,Bū)Q ≥−εδ
2
‖p‖2

Q − ε

2δ
‖Bū‖2

Q

≥−εδ
2
‖p‖2

Q −εC 2
b

2δ
‖ū‖2

V in view of (31).

Putting (43), (44) and the above inequality together, we find that

Ac
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
(1−θ)a(u0,u0)+

(
Ca − Ca

θ
+ 2µ

β2 −µεC 2
b

δ

)
‖ū‖2

V

)
+ 1

2
‖p‖2

Q +εCaβ
2
(
1−µδ

2

)
‖p‖2

Q .

Hence, choosing θ = 1
2 , µ=Caβ

2 and recalling (40), it holds that

Ac
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
α0

2
‖u0‖2

V +Ca

(
1−εβ

2C 2
b

δ

)
‖ū‖2

V

)
+ 1

2
‖p‖2

Q +εCaβ
2
(
1−Caβ

2 δ

2

)
‖p‖2

Q .

(45)
Finally, we set δ= 1

Caβ2 so that

1−Caβ
2 δ

2
= 1

2
and 1−εβ

2C 2
b

δ
= 1−εCaβ

4C 2
b ≥ 1

2
· α0

Ca

in virtue of (41). Thus

Ac
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V +
(

1

2
+εCaβ

2

2

)
‖p‖2

Q , (46)

where we used that ‖u‖2
V = ‖u0‖2

V +‖ū‖2
V . All in all, we have chosen

T(u, p) = (
Caβ

2u +LB p,−Caβ
2p + (Caβ

2)2Bu
)
.

Then, estimate (42) follows from (4) with a stability constant independent of ε since (46) is robust
for vanishing ε and since |||T||| does not depend on ε either. �

Remark 13. The final estimate (46) is very close to (37). The only difference between these two
estimates is a factor of 2 between the constants multiplying the norms of u and p, with α0 =α.

Remark 14. In Ladyzhenskaya–Babuška–Brezzi’s framework, it is commonly assumed that ε≤ 1.
On the other hand, in (41), we find a smallness condition that depends explicitly on the various
constants of the problem.
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Remark 15. The inf-sup condition (18) and the continuity of b imply that β ≤ Cb , i.e. Cbβ ≥ 1.
Therefore, (41) yields in particular

ε≤ 1

Caβ2 ,

which corresponds to the condition found in Remark 11 for negative values of ε. As a matter
of fact, the non-coercivity of a on the whole space V calls for the introduction of a term Bu in
the mapping T. This term induces an additional term of the form c(p,Bu) in the expression of
Ac

(
(u, p),T(u, p)

)
, that can be interpreted as a “negative perturbation” of the bilinear form A .

Now, we move to the case where c is given by (38). Let us denote by Cc0 the continuity con-
stant of the bilinear form c0. The next theorem establishes the well-posedness of the perturbed
problem for a very general form c0.

Theorem 16. Assume that (18) holds true, and that the bilinear forms a and c0 are both symmetric
and positive. Suppose in addition that there exist α0 > 0 and γ0 > 0 such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB,

and
c0(p0, p0) ≥ γ0‖p0‖2

Q , ∀p0 ∈ KerB∗. (47)

If ε is small enough, namely

ε≤ 1

2Cc0Caβ4C 2
b

, (48)

then Problem (36) is well-posed and

‖(u, p)‖V ×Q ≤C‖( f , g )‖V ′×Q ′ ,

with C a constant depending only on α0, β, γ0, Ca and Cb .

Proof. First, we adapt the beginning of the proof of Theorem 12 to take into consideration the
bilinear form c0. Since c0 is symmetric and positive, we can use Young’s inequality to obtain

−c(p,Bu) =−εc0(p,Bū)Q ≥−εδ
2

c0(p, p)− ε

2δ
c0(Bū,Bū)

≥−εδ
2

c0(p, p)−εCc0C 2
b

2δ
‖ū‖2

V since ‖Bū‖2
Q ≤C 2

b‖ū‖2
V ,

and thus (45) becomes

Ac
(
(u, p),T(u, p)

)≥ Caβ
2

2

(
α0

2
‖u0‖2

V +Ca

(
1−εCc0β

2C 2
b

δ

)
‖ū‖2

V

)
+ 1

2
‖p‖2

Q +εCaβ
2
(
1−Caβ

2 δ

2

)
c0(p, p),

where T is the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
Caβ

2u +LB p,−Caβ
2p + (Caβ

2)2Bu
)
.

Setting δ= 1
Caβ2 as before, we get the estimate

Ac
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V + 1

2
‖p‖2

Q +εCaβ
2

2
c0(p, p),

as long as ε≤ 1
2Cc0 Caβ4C 2

b
(2− α0

Ca
), which is the case under the assumption (48) since α0 ≤Ca .

Then, as the bilinear form c0 is not necessarily coercive on the whole space Q, we use the
decomposition p = p0 + p̄ with p0 ∈ KerB∗ and p̄ ∈ (KerB∗)⊥. From Young’s inequality, we have

c0(p, p) ≥ (1−θ)c0(p0, p0)+
(
Cc0 −

Cc0

θ

)
‖p̄‖2

Q
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for all 0 < θ < 1. Setting θ = 1
2 and using (47), it follows that

Ac
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V + 1

2
‖p‖2

Q +εCaβ
2

2

(γ0

2
‖p0‖2

Q −Cc0‖p̄‖2
Q

)
.

Now, we notice that
1

2
‖p‖2

Q ≥ 1

8
‖p‖2

Q + 3

8
‖p̄‖2

Q

and that, thanks to (48),

3

8
‖p̄‖2

Q = 1

2
· 3

4
‖p̄‖2

Q ≥ εCc0Caβ
4C 2

b ·
3

4
‖p̄‖2

Q ≥ εCaβ
2

2
· 3

2
Cc0‖p̄‖2

Q

because Cbβ≥ 1. Hence

Ac
(
(u, p),T(u, p)

)≥α0
Caβ

2

4
‖u‖2

V + 1

8
‖p‖2

Q +εCaβ
2

2

(
γ0

2
‖p0‖2

Q +
(3

2
Cc0 −Cc0

)
‖p̄‖2

Q

)
≥α0

Caβ
2

4
‖u‖2

V +
(

1

8
+εγ0

Caβ
2

4

)
‖p‖2

Q since Cc0 ≥ γ0,

which shows that Ac is T-coercive. �

Lastly, we mention that an important consequence of the previous result is to estimate the
distance between the solution (uε, pε) of the perturbed problem

Auε+B∗pε = f , in V ′,
Buε−εC0pε = g , in Q ′,

(49)

and the solution (u, p) of the original saddle-point problem (15) as a function of the penalty
parameter ε.

Corollary 17. Assume that (18) holds true, that the form a is symmetric and positive, and that c
takes the form of (38). If there exist α0 > 0 and γ0 > 0 such that

a(u0,u0) ≥α0‖u0‖2
V , ∀u0 ∈ KerB, c0(p0, p0) ≥ γ0‖p0‖2

Q , ∀p0 ∈ KerB∗,

and if

ε≤ 1

2Cc0Caβ4C 2
b

,

then we have

‖u −uε‖V +‖p −pε‖Q ≤Cε, (50)

with C a constant depending only on α0, β, γ0, Ca , Cb and Cc0 .

Proof. Subtracting (49) from (15), we find that (u −uε, p −pε) solves the system

A(u −uε)+B∗(p −pε) = 0, in V ′,
B(u −uε)−εC0(p −pε) =−εC0p, in Q ′.

From Theorem 16, we infer that

‖(u −uε, p −pε)‖V ×Q ≤C‖(0,−εC0p)‖V ′×Q ′

with C depending only on α0, β, γ0, Ca and Cb . Thus

‖(u −uε, p −pε)‖V ×Q ≤CCc0ε‖p‖Q ,

which proves (50). �
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3.6. Case of a “fixed” augmentation

If the bilinear form c is given, the extra terms of the form c(p,Bu) arising from the previously
considered T-coercivity operator can not be controlled as before, because there is no factor ε to
adjust. Below, we assume that c is coercive on Q, namely that there exists γ> 0 such that

c(p, p) ≥ γ‖p‖2
Q , ∀p ∈Q. (51)

So, to control these extra terms, we introduce an operator C−1 in the expression of T, where
C−1 ∈L (Q ′,Q) is defined by

c(C−1g , q) = 〈g , q〉Q ′,Q , ∀g ∈Q ′,∀q ∈Q.

One can easily check that the operator C−1 satisfies

(Cc )−1‖g‖Q ′ ≤ ‖C−1g‖Q ≤ γ−1‖g‖Q ′ , ∀g ∈Q ′,

and 〈
g ,C−1g

〉
Q ′,Q ≥ γ

C 2
c
‖g‖2

Q ′ , ∀g ∈Q ′. (52)

Theorem 18. Assume that (51) holds true and that the bilinear forms a and c are both symmetric
and positive. Suppose in addition that there exists a constant αB > 0 such that

a(u,u)+ γ

2C 2
c
‖Bu‖2

Q ′ ≥αB‖u‖2
V , ∀u ∈V , (53)

then Problem (36) is well-posed and

‖(u, p)‖V ×Q ≤C‖( f , g )‖V ′×Q ′ ,

with C a constant depending only on αB , γ and Cb .

Proof. For η,µ> 0, we consider the mapping

T : V ×Q −→V ×Q

(u, p) 7−→ (
u,−ηp +µC−1(Bu)

)
.

Then, using the definitions of C−1 and B , we compute

Ac
(
(u, p),T(u, p)

) = a(u,u)+b(u, p)−ηb(u, p)+µb(u,C−1Bu)+ηc(p, p)−µc(p,C−1Bu)

= a(u,u)+ (1−η)b(u, p)+µ〈Bu,C−1Bu〉Q ′,Q +ηc(p, p)−µ〈Bu, p〉Q ′,Q

= a(u,u)+ (1−η−µ)b(u, p)+µ〈Bu,C−1Bu〉Q ′,Q +ηc(p, p).

Let us choose η,µ > 0 such that η+ µ = 1 to cancel the second term above. To fix ideas, let
η=µ= 1/2, so that

T(u, p) =
(
u,−1

2
p + 1

2
C−1(Bu)

)
(54)

and
Ac

(
(u, p),T(u, p)

)= a(u,u)+ 1

2
〈Bu,C−1Bu〉Q ′,Q + 1

2
c(p, p).

Owing to (52) and (51), we deduce that

Ac
(
(u, p),T(u, p)

)≥ a(u,u)+ γ

2C 2
c
‖Bu‖2

Q ′ + γ

2
‖p‖2

Q ,

and the result follows. �

Remark 19. The T-coercivity estimate reads

Ac
(
(u, p),T(u, p)

)≥αB‖u‖2
V + γ

2
‖p‖2

Q , (55)

so that it depends on γ, whereas it was independent of ε in the small perturbation case. Moreover,
because of the term C−1(Bu) in (54), |||T||| behaves as γ−1. Nevertheless, the final stability estimate
is robust because the value of the constant γ is fixed.
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Remark 20. Note that Theorem 18 does not require the inf-sup condition (18) to be true.
However, if (18) holds, then (53) is automatically satisfied. As a matter of fact, for any u ∈ V ,
using the decomposition u = u0 + ū with u0 ∈ KerB and ū ∈ (KerB)⊥, we have seen in the proof of
Theorem 8 that, for all 0 < θ < 1, it holds

a(u,u) ≥ (1−θ)a(u0,u0)+
(
Ca − Ca

θ

)
‖ū‖2

V and ‖Bu‖2
Q ′ = ‖Bū‖2

Q ≥β−2‖ū‖2
V .

Hence,

a(u,u)+ γ

2C 2
c
‖Bu‖2

Q ′ ≥ (1−θ)a(u0,u0)+
(
Ca − Ca

θ
+ γ

2C 2
c
β−2

)
‖ū‖2

V .

We then observe that(
Ca − Ca

θ
+ γ

2C 2
c
β−2

)
> 0, ∀θ ∈

((
1+ γ

2C 2
c Ca

β−2
)−1

,1

)
,

so (53) is obtained by choosing some θ = θ(Ca ,β,Cc ,γ) in the above interval.

In addition to the Stokes problem, let us see next how other typical examples of mixed
formulations fall within the T-coercivity framework.

4. Application to electromagnetism

Our goal is to solve the so-called quasi-static magnetic problem set in a anisotropic medium,
surrounded by a perfect conductor (see [1, Section 6.4]). The medium is characterized by its
dielectric permittivity ε and its magnetic permeability µ.

Let Ω be the domain of R3 in which the problem is set. For simplicity, we assume that Ω is
simply connected, with a connected boundary. Moreover, we assume that ξ ∈ {ε,µ} satisfy the
following assumption:{

ξ is a real-valued, symmetric, measurable tensor field onΩ,
∃ξ−,ξ+ > 0, ∀z ∈R3, ξ− |z |2 ≤ ξz · z ≤ ξ+ |z |2 a.e. inΩ.

(56)

Because one is dealing with symmetric tensors, if ξ fulfills (56), so does ξ−1, with (ξ−1)+ = (ξ−)−1

and (ξ−1)− = (ξ+)−1.
Given H? ∈ L2(Ω), such that µH? ∈ H 0(div ;Ω)∩ H(div0;Ω) and ρ ∈ H−1(Ω), the quasi-static

magnetic problem amounts to finding E ∈ L2(Ω) such that

µ−1curl E = H?, inΩ,

div(εE ) = ρ, inΩ,

E ×n = 0, on ∂Ω.

(57)

Under the assumptions on ε and µ, on the one hand we note that E ∈ H 0(curl ;Ω). On the other
hand, it is known that the problem (57) is well-posed, see for instance [1, Theorem 6.1.4]. Below,
we propose to recover well-posedness using the T-coercivity approach.

4.1. Proving well-posedness with T-coercivity

Classically, the electromagnetic energy is equal to (εE ,E )L2(Ω) + (µH , H)L2(Ω), where H is the
magnetic field. For our problem with the electric field E as the unknown, it can be expressed
as (εE ,E )L2(Ω) + (µ−1curl E ,curl E )L2(Ω) because H? ∼−∂t H . Indeed, under the assumption (56)
made on ε and µ, we note that we can endow H 0(curl ;Ω) with the scalar product (·, ·)ε,µ−1curl :

(u, v ) 7→ (εu, v )L2(Ω) + (µ−1curl u,curl v )L2(Ω), and the associated scaled norm

‖u‖ε,µ−1curl =
(
(εu,u)L2(Ω) + (µ−1curl u,curl u)L2(Ω)

)1/2
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is equivalent to the "natural" norm. We endow H 1
0 (Ω) with the scalar product (·, ·)1,ε : (p, q) 7→

(ε∇p,∇q)L2(Ω), and the associated scaled norm

‖q‖1,ε =
(
(ε∇q,∇q)L2(Ω)

)1/2

is equivalent to ‖ · ‖H 1(Ω) according to Poincaré inequality. In this setting, 1H 1
0 (Ω)→H−1(Ω) is the

isomorphism defined by

〈1H 1
0 (Ω)→H−1(Ω)p, q〉H−1(Ω),H 1

0 (Ω) = (p, q)1,ε = (ε∇p,∇q)L2(Ω), ∀p, q ∈ H 1
0 (Ω),

while the norm in H−1(Ω) is

‖g‖−1,ε−1 = sup
q∈H 1

0 (Ω)\{0}

〈g , q〉H−1(Ω),H 1
0 (Ω)

‖q‖1,ε
, ∀g ∈ H−1(Ω).

Bearing in mind that curl (∇p) = 0, it follows that

‖q‖1,ε =
(
(ε∇q,∇q)L2(Ω)

)1/2 = ‖∇q‖ε,µ−1curl , ∀q ∈ H 1
0 (Ω).

Finally, for ξ ∈ {ε,ε−1,µ,µ−1}, we use the scalar product (·, ·)ξ : (u, v ) 7→ (ξu, v )L2(Ω), and the

associated scaled norm ‖ ·‖ξ in L2(Ω).
First, for H? ∈ H 0(div ;Ω)∩ H(div0;Ω) and ρ ∈ H−1(Ω), we observe that the equivalent weak

formulation of Problem (57) reads: find E ∈ H 0(curl ;Ω) such that

(µ−1curl E ,curl v )L2(Ω) = (H?,curl v )L2(Ω), ∀v ∈ H 0(curl ;Ω),

(εE ,∇q)L2(Ω) =−〈ρ, q〉H−1(Ω),H 1
0 (Ω), ∀q ∈ H 1

0 (Ω).

Second, in order to fit (57) into the abstract framework (15), we introduce an artifical pressure
unknown p̃ by adding a term (εv ,∇p̃)L2(Ω) in the first equation. The previous formulation
becomes: find (E , p̃) ∈ H 0(curl ;Ω)×H 1

0 (Ω) such that

(µ−1curl E ,curl v )L2(Ω) + (εv ,∇p̃)L2(Ω) = (H?,curl v )L2(Ω), ∀v ∈ H 0(curl ;Ω),

(εE ,∇q)L2(Ω) =−〈ρ, q〉H−1(Ω),H 1
0 (Ω), ∀q ∈ H 1

0 (Ω).
(58)

Indeed, one can easily check that (E , p̃) is solution of (58) if and only if p̃ = 0 and E is solution of
(57). So, defining the bilinear forms

aµ−1 (u, v ) = (µ−1curl u,curl v )L2(Ω), ∀u ∈ H 0(curl ;Ω),∀v ∈ H 0(curl ;Ω),

bε(v , q) = (εv ,∇q)L2(Ω), ∀v ∈ H 0(curl ;Ω),∀q ∈ H 1
0 (Ω),

the all-in-one bilinear form of Maxwell problem is given by

A
(
(E , p̃), (v , q)

)= aµ−1 (E , v )+bε(v , p̃)+bε(E , q). (59)

Thanks to the introduction of scaled norms, we find that the bilinear form aµ−1 is continuous
on H 0(curl ;Ω) × H 0(curl ;Ω) with a continuity constant Ca = 1, while the bilinear form bε is
continuous on H 0(curl ;Ω)×H 1

0 (Ω) with a continuity constant Cb = 1. Besides, we have∣∣(H?,curl v )L2(Ω) −〈ρ, q〉H−1(Ω),H 1
0 (Ω)

∣∣≤ ‖H?‖µ‖curl v‖µ−1 +‖ρ‖−1,ε−1‖q‖1,ε,

so that C` ≤
(‖H?‖2

µ+‖ρ‖2
−1,ε−1

)1/2.

Let us give an explicit expression of the abstract operators

Bε ∈L
(

H 0(curl ;Ω), H 1
0 (Ω)

)
, LBε ∈L

(
H 1

0 (Ω), (KerBε)⊥
)

corresponding to this problem. Note that for u ∈ H 0(curl ;Ω),

Bεu = 0 ⇐⇒ (εu,∇q)L2(Ω) = 0, ∀q ∈ H 1
0 (Ω) ⇐⇒ div(εu) = 0.

Hence,
KerBε = K N (Ω;ε), where K N (Ω;ε) = {

v ∈ H 0(curl ;Ω), div(εv ) = 0
}
. (60)
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In addition, one knows that (see (6.16) in [1])

(KerBε)⊥ = {
v ∈ H 0(curl ;Ω), ∃q ∈ H 1

0 (Ω), v =∇q
}
. (61)

With those results, we can explicit LBε . On the one hand, by definition of bε, we observe that

bε(LBεp, q) = (
ε(LBεp),∇q

)
L2(Ω), ∀p, q ∈ H 1

0 (Ω). (62)

On the other hand, according to (19), one has

bε(LBεp, q) = (p, q)1,ε = (ε∇p,∇q)L2(Ω), ∀p, q ∈ H 1
0 (Ω). (63)

Putting (61), (62) and (63) together, we deduce that

LBεp =∇p.

Then, for all p ∈ H 1
0 (Ω), it follows that

‖LBεp‖2
ε,µ−1curl = ‖∇p‖2

ε,µ−1curl = ‖p‖2
1,ε,

hence LBε is an isometry, so LBε satisfies (21) with β= 1, i.e. the inf-sup condition (18) holds.
Going back to KerBε (cf. the characterization (60)), we recall Weber inequality [38] (see also [1,

Theorem 6.1.4]): there exists CK > 1 such that

‖k‖ε,µ−1curl ≤CK ‖curl k‖µ−1 , ∀k ∈ K N (Ω;ε). (64)

The fact that CK > 1 stems from the definition of the scaled norms. Hence, Weber inequality (64)
says exactly that the form aµ−1 is coercive on KerBε, so that all the conditions of Theorem 8 are

fulfilled, with α0 = (CK )−2 < 1. Precisely, Theorem 8 states that the bilinear form A is T-coercive
for the mapping

T : H 0(curl ;Ω)×H 1
0 (Ω) −→ H 0(curl ;Ω)×H 1

0 (Ω)

(E , p̃) 7−→
(
E +∇p̃,−p̃ + 3

4
φE

)
,

where φE = BεE ∈ H 1
0 (Ω). Note that, for any v ∈ H 0(curl ;Ω), we have

(Bεv , q)1,ε = bε(v , q) = (εv ,∇q)L2(Ω), ∀q ∈ H 1
0 (Ω).

Therefore, Bεv is the unique φv ∈ H 1
0 (Ω) satisfying

(ε∇φv ,∇q)L2(Ω) = (εv ,∇q)L2(Ω), ∀q ∈ H 1
0 (Ω). (65)

Furthermore, following (30), it holds that

A
(
(E , p̃),T(E , p̃)

)≥ (CK )−2

4
‖E‖2

ε,µ−1curl +
1

2
‖p̃‖2

1,ε ≥α
(‖E‖2

ε,µ−1curl +‖p̃‖2
1,ε

)
,

with α= (CK )−2

4 .
To get the stability constant, we need to compute |||T|||, that is, bound ‖T(E , p̃‖)H 0(curl ;Ω)×H 1

0 (Ω)

for (E , p̃) ∈ H 0(curl ;Ω)×H 1
0 (Ω). We find that

‖T(E , p̃)‖2
H 0(curl ;Ω)×H 1

0 (Ω)
= ‖E +∇p̃‖2

ε,µ−1curl +
∥∥∥−p̃ + 3

4
φE

∥∥∥2

1,ε

≤ 2‖E‖2
ε,µ−1curl +2‖∇p̃‖2

ε,µ−1curl +2‖p̃‖2
1,ε+2 ·

(3

4

)2
‖φE‖2

1,ε

≤ 2‖E‖2
ε,µ−1curl +4‖p̃‖2

1,ε+2 ·
(3

4

)2
‖E‖2

ε,µ−1curl

≤ 4
(‖E‖2

ε,µ−1curl +‖p̃‖2
1,ε

)
,

where we used that ‖φE‖1,ε = ‖BεE‖1,ε ≤ ‖E‖ε,µ−1curl thanks to (31). Therefore, |||T||| ≤ 2.
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Applying (4), we conclude that

‖E‖ε,µ−1curl ≤ 8C 2
K

(‖H?‖2
µ+‖ρ‖2

−1,ε−1

)1/2. (66)

4.2. Optimized bounds

To achieve T-coercivity, the abstract theory does not take into account the so-called double
orthogonality property (or Helmholtz decomposition), which states that for all k ∈ K N (Ω;ε) and
all q ∈ H 1

0 (Ω), one has (εk ,∇q)L2(Ω) = (µ−1curl k ,curl (∇q))L2(Ω) = 0, so that

‖k +∇q‖2
ε,µ−1curl = ‖k‖2

ε,µ−1curl +‖q‖2
1,ε.

Indeed, given E ∈ H 0(curl ;Ω), we note that, with the help ofφE ∈ H 1
0 (Ω) solving (65), it holds that

kE = E −∇φE ∈ K N (Ω;ε).
We sketch below how one can improve the estimates, see [22] for further details. Let us choose

Topt : H 0(curl ;Ω)×H 1
0 (Ω) −→ H 0(curl ;Ω)×H 1

0 (Ω)

(E , p̃) 7−→ (
kE +∇p̃,φE

)
.

Thanks to the double orthogonality property, one finds easily that Topt is an isometry and that

A
(
(E , p̃),Topt (E , p̃)

)= ‖curl kE‖2
µ−1 +‖p̃‖2

1,ε+‖φE‖2
1,ε

≥ (CK )−2(‖E‖2
ε,µ−1curl +‖p̃‖2

1,ε

)
.

Applying (4), we have the optimized stability estimate

‖E‖ε,µ−1curl ≤C 2
K

(‖H?‖2
µ+‖ρ‖2

−1,ε−1

)1/2. (67)

We conclude that, for all possible choices of coefficients ε and µ, there is only a factor 8 difference
between the stability constant obtained via the abstract T-coercivity approach, see (66), and the
optimized stability constant which relies explicitly on the double orthogonality property, see (67).
This shows the robustness of the abstract theory.

Remark 21. One can obtain similar results in more general geometries, such as a non-simply-
connected domain, or a non-connected boundary.

5. Application to nearly-incompressible elasticity

In this section, we apply the T-coercivity framework to the equations of elasticity, assuming
homogeneous Dirichlet boundary conditions. Let Ω ⊂ Rd be a domain, where 2 ≤ d ≤ 3. For a
prescribed body force f ∈ H−1(Ω), we look for the displacement u ∈ H 1(Ω) such that

−div
(
σ(u)

)= f , inΩ,

u = 0, on ∂Ω,
(68)

where σ(u) denotes the stress tensor. We assume that it is given by Hooke’s law

σ(u) = 2µε(u)+λ(divu)I ,

where λ,µ> 0 are the Lamé coefficients of the material and ε(u) = 1
2

(∇u+(∇u)T
)

is the linearized
strain tensor. Thanks to Korn inequality [25], the space H 1

0(Ω) is here endowed with the scalar
product

(u, v ) 7−→
∫
Ω
ε(u) : ε(v )dx,
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whose associated norm u 7→ ‖ε(u)‖ is equivalent to the H 1(Ω)-norm in H 1
0(Ω). Introducing the

new unknown p =λdivu, the elasticity system (68) can be written in mixed form as follows: find
u ∈ H 1

0(Ω) and p ∈ L2
0(Ω) such that

−2µdiv
(
ε(u)

)−∇p = f , inΩ,

divu − 1

λ
p = 0, inΩ.

Or equivalently, in variational form: find u ∈ H 1
0(Ω) and p ∈ L2

0(Ω) such that

a(u, v )+b(v , p) = 〈 f , v〉, ∀v ∈ H 1
0(Ω),

b(u, q)− 1

λ
c0(p, q) = 0, ∀q ∈ L2

0(Ω),
(69)

with

a(u, v ) = 2µ
∫
Ω
ε(u) : ε(v )dx, b(v , q) =

∫
Ω

q div v dx and c0(p, q) =
∫
Ω

pq dx.

For nearly-incompressible materials, the first Lamé coefficient λ goes to infinity, so that λ−1 goes
to zero. Therefore, (69) can be seen as a small perturbation of Stokes system.

Since the bilinear form a is coercive on the whole space H 1
0(Ω), we can directly apply The-

orem 10 in the special case of Remark 11. The bilinear form a is continuous and coercive, with
Ca = α = 2µ. In addition, the bilinear form b is continuous and satisfies the inf-sup condition
(18) with β = Cdiv since b is the same form – except to the sign – as for Stokes problem. Then,
Theorem 10 furnishes that the all-in-one bilinear form Ac defined by

Ac
(
(u, p), (v , q)

)= 2µ
∫
Ω
ε(u) : ε(v )dx +

∫
Ω

p div v dx +
∫
Ω

q divu dx − 1

λ

∫
Ω

pq dx (70)

is T-coercive for the mapping

T : H 1
0(Ω)×L2

0(Ω) −→ H 1
0(Ω)×L2

0(Ω)
(u, p) 7−→ (

2µC 2
div u +v−p ,−2µC 2

div p
)
,

(71)

and (37) implies that

Ac
(
(u, p),T(u, p)

)≥ 2µ2C 2
div‖ε(u)‖2 +

(
1

2
+ 2µ

λ
C 2

div

)
‖p‖2.

Note that this estimate is robust in the incompressible limit, namely for large values of λ.
Finally, replacing ν by 2µ in (11) and using (4), we get that the unique solution of (69) satisfies

‖(u, p)‖H 1
0(Ω)×L2

0(Ω) ≤
2max

(
2
p

2µC 2
div,Cdiv

(
2+4µ2C 2

div

)1/2
)

min(4µ2C 2
div,1+4µλ−1C 2

div )
‖ f ‖(H 1

0(Ω))′ ,

where ‖·‖(H 1
0(Ω))′ denotes the dual norm of ‖ε(·)‖.

6. Application to neutron diffusion

Let Ω ⊂ Rd be a domain, where 2 ≤ d ≤ 3. We consider the neutron diffusion equation with zero
flux boundary condition: given a prescribed fission source S f ∈ L2(Ω), find u ∈ H 1(Ω) such that

−div(D∇u)+σu = S f , inΩ,

u = 0, on ∂Ω,
(72)

where u, D , and σ denote respectively the neutron flux, the diffusion coefficient and the macro-
scopic absorption cross section. It is assumed that the diffusion coefficient D fulfills (56), and that
the macroscopic absorption cross section is such that{

σ is a real-valued measurable scalar field onΩ,
∃σ−,σ+ > 0, σ− ≤σ≤σ+ a.e. inΩ.

(73)
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Because S f ∈ L2(Ω), one has D∇u ∈ H(div ;Ω). This problem can be recast equivalently in mixed
form, introducing the auxiliary unknown p = −D∇u, called the neutron current. It reads: find
(u, p) ∈ H 1

0 (Ω)×H(div ;Ω) such that

div p +σu = S f , inΩ,

D−1p +∇u = 0, inΩ.
(74)

It can be shown that equivalent weak form is: find (u, p) ∈ L2(Ω)×H(div ;Ω) such that∫
Ω

(
v div p +σuv −D−1p ·q +u div q

)
dx =

∫
Ω

S f v dx ∀(v, q) ∈ L2(Ω)×H(div ;Ω). (75)

Remark 22. Among other things, one can recover that the solution u ∈ L2(Ω) from the weak form
(75) is such that u ∈ H 1(Ω), and that u = 0 on ∂Ω.

6.1. Proving well-posedness with T-coercivity

Defining the bilinear forms

aD−1 (p , q) = (D−1p , q)L2(Ω), ∀p ∈ H(div ;Ω),∀q ∈ H(div ;Ω),

b(q , v) =−(div q , v)L2(Ω), ∀q ∈ H(div ;Ω),∀v ∈ L2(Ω),

cσ(u, v) = (σu, v)L2(Ω), ∀u ∈ L2(Ω),∀v ∈ L2(Ω),

the all-in-one bilinear form of the diffusion problem is given by

Ac
(
(p ,u), (q , v)

)= aD−1 (p , q)+b(q ,u)+b(p , v)− cσ(u, v). (76)

Here, we are in the case of a “fixed” augmentation, as treated in Section 3.6.
Let us check below that all the conditions of Theorem 18 are fulfilled. First, cσ is coercive on

L2(Ω) with γ = σ−. Then, aD−1 fulfills (13) with Ca = (D−)−1, whereas b fulfills (14) with Cb = 1.
Finally, we look for the condition (53). It is straightforward to check that, for all p ∈ H(div ;Ω),
B p = Bp =−div p . Hence

aD−1 (p , p)+ γ

2C 2
c
‖B p‖2 = (D−1p , p)+ σ−

2σ2+
‖div p‖2

≥ min
(
(D+)−1,

σ−
2σ2+

)
‖p‖2

H(div ;Ω).

Then, Theorem 18 establishes that the bilinear form Ac is T-coercive for the mapping (54)

T : H(div ;Ω)×L2(Ω) −→ H(div ;Ω)×L2(Ω)

(p ,u) 7−→
(

p ,
1

2
(−u −σ−1div p)

)
.

Furthermore, using the estimate (55), it holds that

Ac
(
(p ,u),T(p ,u)

)≥ min
(
(D+)−1,

σ−
2σ2+

)
‖p‖2

H(div ;Ω) +
σ−
2

‖u‖2 ≥α‖(p ,u)‖2
H(div ;Ω)×L2(Ω), (77)

with α= 1
2 min

(
2(D+)−1,σ−(σ+)−2,σ−

)
.

There remains to estimate |||T|||. One has

‖T(p ,u)‖2
H(div ;Ω)×L2(Ω) = ‖p‖2

H(div ;Ω) +
1

4
‖−u −σ−1div p‖2

L2(Ω)

≤ ‖p‖2
H(div ;Ω) +

1

4

(
(1+3)‖u‖2

L2(Ω) +
(
1+ 1

3

)
(σ−)−2‖div p‖2

L2(Ω)

)
≤

(
1+ 1

3
(σ−)−2

)
‖(p ,u)‖2

H(div ;Ω)×L2(Ω),
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so that |||T||| ≤ (
1+ 1

3 (σ−)−2
)1/2. Applying (4), we conclude that

‖(p ,u)‖H(div ;Ω)×L2(Ω) ≤
2
(
1+ 1

3 (σ−)−2
)1/2

min
(
2(D+)−1,σ−(σ+)−2,σ−

)‖S f ‖L2(Ω).

Remark 23. Some of those computations can be found in [24, 33]. Here, we see them as a
consequence of the general result stated in Theorem 18. Note that in [24, 33], the T-coercivity
estimate (77) is obtained with a constant α′ = 1

2 min
(
2(D+)−1, (σ+)−1,σ−

)
, which is very close to

α since σ−(σ+)−2 = (σ+)−1 · σ−
σ+ and σ−

σ+ ≤ 1.

Remark 24. If one wants to obtain estimates without the bounding factorsσ± and D±, a standard
path is to imbed the parameters D and σ into the definition of the norms, like it is done in
Section 4. Namely, one chooses the norms:

‖v‖σ = (
(σv, v)L2(Ω)

)1/2,

‖q‖D−1,σ−1div = (
(D−1q , q)L2(Ω) + (σ−1div q ,div q)L2(Ω)

)1/2,

‖(q , v)‖V = (‖v‖2
σ+‖q‖2

D−1,σ−1div

)1/2.

On the one hand, all norms are “fixed” once the parameters are given. On the other hand, one
can easily check that the stability constant is now independent of the bounding factors, by using
the same mapping T as before.

7. T-coercivity at the discrete level

Previously, we demonstrated the robustness and the flexbility of the T-coercivity approach to
study mixed problems at the continuous level. In this section, we are going to see how T-coercivity
also enables us to provide a stable discretization of such problems with mixed finite elements. Let
us recall the simple results below [19, 20].

Definition 25. Let W be a Hilbert space, A (·, ·) be a continuous bilinear form over W ×W and
(Wh)h be conforming approximations of W . We say that A is uniformly Th-coercive if

∃α∗,β∗ > 0, ∀h > 0, ∃Th ∈L (Wh), |A (uh ,Thuh)| ≥α∗‖uh‖2
W , ∀uh ∈Wh , and |||Th ||| ≤β∗.

Proposition 26. Let W be a Hilbert space, f be an element of W ′, A (·, ·) be a continuous bilinear
form over W ×W and (Wh)h be conforming approximations of W . Denote by AAAh ∈L (Wh ,W ′

h) the
discrete operator associated to A|Wh . The problem{

Find uh ∈Wh such that

∀vh ∈Wh , A (uh , vh) = 〈 f , vh〉
is well-posed and (AAA−1

h )h is uniformly bounded if and only if A is uniformly Th-coercive. In that
case, denoting by CA the continuity constant of the bilinear form A , it holds that

‖u −uh‖W ≤C inf
vh∈Wh

‖u − vh‖W , (78)

with C = 1+ CA β∗
α∗ independent of h.

Remark 27. Proposition 26 can be extended to the case where the discrete forms Ah and fh

differs from the continuous forms A and f . In that case, Céa’s lemma (78) becomes

‖u −uh‖W ≤C inf
vh∈Wh

(‖u − vh‖W +Cons f ,h +ConsA ,h(vh)
)
,

with

Cons f ,h = sup
vh∈Wh \{0}

∣∣〈 f − fh , vh〉
∣∣

‖vh‖W
and ConsA ,h(vh) = sup

wh∈Wh \{0}

|(A −Ah)(vh , wh)|
‖wh‖W

, ∀vh ∈Wh .

As before, we start with the leading example of Stokes problem.
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7.1. Stokes problem

For a given h, the natural discretization of Problem (5) reads:{
Find (uh , ph) ∈V h ×Qh such that

∀(v h , qh) ∈V h ×Qh , A
(
(uh , ph), (v h , qh)

)= 〈 f , v h〉,
(79)

where V h ⊂ H 1
0(Ω) and Qh ⊂ L2

0(Ω) are two finite dimensional spaces constituting a conforming
approximation of H 1

0(Ω)×L2
0(Ω).

From Proposition 26, we know that Problem (79) is well-posed if and only if A is uniformly
Th-coercive. To build a suitable mapping Th ∈ L (V h ×Qh), a natural idea is to reproduce the
continuous mapping from the proof of Theorem 3

T : H 1
0(Ω)×L2

0(Ω) −→ H 1
0(Ω)×L2

0(Ω)

(u, p) 7−→ (
λu +v p ,−λp

)
at the discrete level. The operator T above depends on the divergence lifting v p ∈ H 1

0(Ω) of the
pressure p ∈ L2

0(Ω) defined by, see (8)-(9),

−div v p = p and ‖∇v p‖ ≤Cdiv‖p‖.

To obtain a similar lifting in the discrete setting, we consider the continuous lifting of the discrete
pressure ph ∈Qh ⊂ L2

0(Ω), namely v ph ∈ H 1
0(Ω) such that

− div v ph = ph and ‖∇v ph‖ ≤Cdiv‖ph‖. (80)

This lifting v ph does not necessarily belong to the discrete space V h ⊂ H 1
0(Ω), so we need an

operator Πh : H 1
0(Ω) −→V h to project it on V h . Therefore, we consider a discrete mapping of the

form
Th : V h ×Qh −→V h ×Qh

(uh , ph) 7−→ (
λuh +Πh(v ph ),−λph

)
.

(81)

Now, let us precise under which conditions the bilinear form A is uniformly Th-coercive by
mimicking the proof of Theorem 3. We compute

A
(
(uh , ph),Th(uh , ph)

)= νλ‖∇uh‖2 +ν
∫
Ω
∇uh : ∇(

Πh(v ph )
)

dx −
∫
Ω

phdiv(Πh v ph )dx.

In order to get a term of the form ‖ph‖2, we assume that∫
Ω

phdiv(Πh v ph )dx =
∫
Ω

phdiv v ph dx, (82)

so that

A
(
(uh , ph),Th(uh , ph)

)= νλ‖∇uh‖2 +ν
∫
Ω
∇uh : ∇(

Πh(v ph )
)

dx +‖ph‖2

in view of (80). Then, for any η> 0, Young inequality yields∫
Ω
∇uh : ∇(

Πh(v ph )
)

dx ≥−η
2
‖∇uh‖2 − 1

2η
‖∇(

Πh(v ph )
)‖2

≥−η
2
‖∇uh‖2 − C 2

divC 2
π

2η
‖ph‖2

provided that there exists a constant Cπ > 0, independent of h and of ph , such that

‖∇(
Πh(v ph )

)‖ ≤Cπ‖∇v ph‖. (83)

Hence, it holds that

A
(
(uh , ph),Th(uh , ph)

)≥ ν(
λ− η

2

)
‖∇uh‖2 +

(
1− νC 2

divC 2
π

2η

)
‖ph‖2.
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Setting η=λ= νC 2
divC 2

π, we obtain

A
(
(uh , ph),Th(v h , ph)

)≥ ν2C 2
divC 2

π

2
‖∇uh‖2 + 1

2
‖ph‖2

≥ 1

2
min(ν2C 2

divC 2
π,1)‖(uh , ph)‖2

H 1
0(Ω)×L2

0(Ω)
. (84)

Moreover, taking into account (83) and mimicking the continuous case (see (11)), we have

|||Th ||| ≤ max
(p

2νC 2
divC 2

π,CdivCπ

(
2+ν2C 2

divC 2
π

)1/2
)
. (85)

So, with the help of the operatorΠh : H 1
0(Ω) −→V h , we have proven the following result.

Theorem 28. If there exist a family of operators (Πh)h and a constant Cπ > 0 such that, for all h,∫
Ω

qh div(Πh v )dx =
∫
Ω

qh div v dx, ∀v ∈ H 1
0(Ω),∀qh ∈Qh , (86)

‖∇(
Πh(v )

)‖ ≤Cπ‖∇v‖, ∀v ∈ H 1
0(Ω), (87)

then Problem (79) is well-posed for all h and

‖(u −uh , p −ph)‖H 1
0(Ω)×L2

0(Ω) ≤C inf
(vh ,qh )∈V h×Qh

‖(u − vh , p −qh)‖H 1
0(Ω)×L2

0(Ω), (88)

with

C = 1+
2max(ν,2)max

(p
2νC 2

divC 2
π,CdivCπ

(
2+ν2C 2

divC 2
π

)1/2
)

min(ν2C 2
divC 2

π,1)
.

Proof. The previous reasoning shows that the bilinear form A is uniformly Th-coercive for the
mapping

Th : V h ×Qh −→V h ×Qh

(uh , ph) 7−→ (
νC 2

divC 2
πuh +Πh(v ph ),−νC 2

divC 2
πph

)
as long as the two conditions (82) and (83) are fulfilled for all ph ∈Qh , which is the case if (86) and
(87) hold true. The stability estimate (88) then follows by using (84) and (85) in (78). �

The conditions (86) and (87) correspond exactly to the assumptions of an abstract result
known as Fortin’s lemma [26]. Above, the T-coercivity approach allowed us to recover these two
conditions in a fully constructive way. Moreover, we recall that, since the form b fulfills an inf-sup
condition (3), those conditions (86)-(87) are equivalent to the so-called uniform discrete inf-sup
condition

∃β′ > 0, ∀h, inf
qh∈Qh \{0}

sup
v h∈V h \{0}

∫
Ω qh div v h dx

‖∇v h‖‖qh‖
≥β′,

see for instance [27, Lemma II.1.1].
Finally, we recall that, provided there is a basic approximability property (i.e. any element of V ×Q
can be approximated by a sequence of elements of (V h ×Qh)h), the convergence of the discrete
solutions to the exact one is a consequence of (88).

7.2. Approximation of saddle-point problems

We now derive a conforming approximation of the abstract problem (15), starting from the
variational expressions (16) or (17), the latter with the form

A
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q).
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So, let (Vh)h , resp. (Qh)h , be two families of finite dimensional subspaces of V , resp. Q. Starting
from (16), the discrete variational formulation writes

Find (uh , ph) ∈Vh ×Qh such that

∀vh ∈Vh , a(uh , vh)+b(vh , ph) = 〈 f , vh〉V ′,V

∀qh ∈Qh , b(uh , qh) = 〈g , qh〉Q ′,Q .

while, starting from (17), the all-in-one discrete variational formulation writes{
Find (uh , ph) ∈Vh ×Qh such that

∀(vh , qh) ∈Vh ×Qh , A
(
(uh , ph), (vh , qh)

)= 〈 f , vh〉V ′,V +〈g , qh〉Q ′,Q .

In abstract form, the uniform discrete inf-sup condition writes

∃β′ > 0, ∀h, inf
qh∈Qh \{0}

sup
vh∈Vh \{0}

b(vh , qh)

‖vh‖V ‖qh‖Q
≥β′. (89)

We suppose that the discrete version of the operator B is the restriction of B to Vh , namely

B(Vh) ⊂Q ′
h . (90)

Introducing the discrete operators Bh : Vh →Qh such that for all h,

(Bh vh , qh)Q = b(vh , qh), ∀(vh , qh) ∈Vh ×Qh ,

the straightforward discrete counterpart of Theorem 5 is

Theorem 29. The following three statements are equivalent:

(i) There exists β′ > 0 such that b(·, ·) fulfills the uniform discrete inf-sup condition (89).

(ii) For all h, Bh : (KerBh)⊥ →Qh is an isomorphism, and

‖Bh vh‖Q ≥β′‖vh‖V , ∀vh ∈ (KerBh)⊥. (91)

(iii) For all h, there exists an isomorphic operator LB ,h : Qh → (KerBh)⊥ such that

Bh(LB ,h qh) = qh and ‖qh‖Q ≥β′‖LB ,h qh‖V , ∀qh ∈Qh . (92)

Remark 30. Obviously, this result also holds if the value of the constant in the discrete inf-sup
condition depends on h, i.e. for each h it holds for some β′(h) > 0, with limh→0β

′(h) = 0. In this
case however, getting error estimates can be more intricate.

As mentioned above for the Stokes system, one has the Fortin lemma (cf. [27, Lemma II.1.1]).

Theorem 31. Assume that the form b fulfills an inf-sup condition (18). The uniform discrete inf-
sup condition (89) holds if, and only if, there exist a family of operators (Πh)h , with Πh : V −→ Vh ,
and a constant Cπ > 0 such that, for all h,

b(Πh v, qh) = b(v, qh), ∀v ∈V , ∀qh ∈Qh ,

sup
h

|||Πh ||| ≤Cπ. (93)

Let us now proceed with the derivation of conditions to ensure that the form A is uniformly
Th-coercive. As a general rule, the proofs of the results follow very closely the proofs that were
given in the exact case. The straightforwardness of the procedure when going from the continu-
ous to the discrete level is one of the main features of the T-coercivity approach. We give next the
discrete counterparts of Theorems 6 and 8.

Theorem 32. Assume that the form a is symmetric and positive, that there exists a constant α′ > 0
such that

a(uh ,uh) ≥α′‖uh‖2
V , ∀uh ∈Vh , (94)

and that the uniform discrete inf-sup condition (89) on the form b holds true.
Then the form A is uniformly Th-coercive.
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The property (94) is sometimes called the the uniform discrete coercivity property.

Proof. Let h be given. We introduce the mapping

Th : Vh ×Qh −→Vh ×Qh

(uh , ph) 7−→ (
λuh +LB ,h ph ,−λph

)
.

We then compute

A
(
(uh , ph),Th(uh , ph)

)= a(uh ,λuh)+a(uh ,LB ,h ph)+b(λuh , ph)+b(LB ,h ph , ph)−b(uh ,λph)

=λa(uh ,uh)+a(uh ,LB ,h ph)+‖ph‖2
Q , according to (92)-left.

Because the form a is symmetric and positive, we can apply Young’s inequality: for any η> 0,

a(uh ,LB ,h ph) ≥−η
2

a(uh ,uh)− 1

2η
a(LB ,h ph ,LB ,h ph).

According now to (92)-right, we find

a(LB ,h ph ,LB ,h ph) ≤Ca‖LB ,h ph‖2
V ≤Ca(β′)−2‖ph‖2

Q .

Using assumption (94), if λ− η
2 > 0, it follows that

A
(
(uh , ph),Th(uh , ph)

)≥α′
(
λ− η

2

)
‖uh‖2

V +
(

1−
Ca(β′)−2

2η

)
‖ph‖2

Q .

Setting η=λ=Ca(β′)−2 as in the exact case, we infer that

A
(
(uh , ph),Th(uh , ph)

)≥ 1

2
min(α′Ca(β′)−2,1)‖(uh , ph)‖2

V ×Q

which proves that A is Th-coercive, with a T-coercivity constant 1
2 min(α′Ca(β′)−2,1) > 0 that is

independent of h.
Since Th(uh , ph) = (Ca(β′)−2uh +LB ,h ph ,−Ca(β′)−2ph), one finds that

‖Th(uh , ph)‖2
V ×Q ≤ 2(Ca(β′)−2)2‖uh‖2

V +2‖LB ,h ph‖2
V + (Ca(β′)−2)2‖ph‖2

Q

≤ 2(Ca(β′)−2)2‖uh‖2
V + (

2(β′)−2 + (Ca(β′)−2)2)‖ph‖2
Q ,

where the last inequality follows from (92)-right. The bound is valid for all h, which yields

sup
h

|||Th ||| ≤ max
(p

2Ca(β′)−2,β
(
2+C 2

a(β′)−2)1/2
)
,

so the form A is uniformly Th-coercive. �

Remark 33. As for the Stokes problem, the discrete right-inverse LB ,h is connected to the Fortin
operator Πh . As a matter of fact, if there exists a family of discrete projectors (Πh)h verifying (93),
the operator defined by LB ,h =Πh(LB ) satisfies (92) with β′ = (Cπβ)−1 since for all qh ∈Qh

‖Πh(LB qh)‖V ≤Cπ‖LB qh‖V ≤Cπβ‖qh‖Q ,

according to (21). As a consequence, to perform stability estimates at the discrete level using Th-
coercivity, one has only to replace β by Cπβ in the computations done at the continuous level.

Theorem 34. Assume that the form a is symmetric and positive, that there exists a constantα′
0 > 0

such that
a(u0,h ,u0,h) ≥α′

0‖0,h‖2
V , ∀u0,h ∈ KerBh , (95)

and that the uniform discrete inf-sup condition (89) on the form b holds true.
Then the form A is uniformly Th-coercive.

The property (95) is sometimes called the uniform discrete coercivity property on the kernels.
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Proof. Let h be given. We consider the mapping

Th : Vh ×Qh −→Vh ×Qh

(uh , ph) 7−→ (
λuh +LB ,h ph ,−λph +λµBhuh

)
.

As in the proof of Theorem 8, we can compute

A
(
(uh , ph),Th(uh , ph)

)=λa(uh ,uh)+a(uh ,LB ,h ph)+‖ph‖2
Q +λµ‖Bhuh‖2

Q

because b(LB ,h ph , ph) = ‖ph‖2
Q . Since the form a is symmetric and positive, one may use Young’s

inequality. By proceeding as in the proof of Theorem 32 and after setting λ = Ca(β′)−2, we find
that

λa(uh ,uh)+a(uh ,LB ,h , ph)+‖ph‖2
Q ≥ 1

2
Ca(β′)−2a(uh ,uh)+ 1

2
‖ph‖2

Q ,

and

A
(
(uh , ph),Th(uh , ph)

)≥ 1

2
Ca(β′)−2(a(uh ,uh)+2µ‖Bhuh‖2

Q

)+ 1

2
‖ph‖2

Q .

Then, we use the decomposition uh = u0,h + ūh with u0,h ∈ KerBh and ūh ∈ (KerBh)⊥. As before,
Young’s inequality yields

a(uh ,uh) ≥ (1−θ)a(u0,h ,u0,h)+
(
Ca − Ca

θ

)
‖ūh‖2

V

for all 0 < θ < 1. Moreover, ‖Bhuh‖2
Q = ‖Bh ūh‖2

Q ≥ (β′)2‖ūh‖2
V according to (91), so that

a(uh ,uh)+2µ‖Bhuh‖2
Q ≥ (1−θ)a(u0,h ,u0,h)+

(
Ca − Ca

θ
+2µ(β′)2

)
‖ūh‖2

V .

Choosing θ = 1
2 and µ= 3

4Ca(β′)−2, it holds that

a(uh ,uh)+2µ‖Bhuh‖2
Q ≥ 1

2
a(u0,h ,u0,h)+ Ca

2
‖ūh‖2

V

≥ α′
0

2
‖u0,h‖2

V + α′
0

2
‖ūh‖2

V = α′
0

2
‖uh‖2

V ,

where we used assumption (95) and Ca ≥α′
0 on the second line.

Finally, we conclude that

A
(
(uh , ph),Th(uh , ph)

)≥ 1

4
α′

0Ca(β′)−2‖uh‖2
V + 1

2
‖ph‖2

Q ,

which yields that A is Th-coercive, with a T-coercivity constant min( 1
4α

′
0Ca(β′)−2, 1

2 ) > 0 that is
independent of h.

From the above, we have Th(uh , ph) = (
Ca(β′)−2uh+LB ,h ph ,−Ca(β′)−2ph+ 3

4 (Ca(β′)−2)2Bhuh
)
,

and, noting that ‖Bhuh‖Q ≤Cb‖uh‖V , one concludes that

sup
h

|||Th ||| ≤∞,

so the form A is uniformly Th-coercive. �

Remark 35. Note that replacing Bu by Bhuh when going from the continuous operator T to the
discrete operator Th is possible because we assumed that Bh is the restriction of B to Vh , see (90).
If (90) does not hold, one introducesΦh : Q −→Qh defined by

b(vh ,Φh q) = b(vh , q), ∀q ∈Q,∀vh ∈Vh ,

like in [4, Proposition 5.1.2]. Then, one has to replace Bhuh byΦh(Bhuh) in the previous proof, i.e.

Th : Vh ×Qh −→Vh ×Qh

(uh , ph) 7−→
(
Ca(β′)−2uh +LB ,h ph ,−Ca(β′)−2ph + 3

4
(Ca(β′)−2)2Φh(Buh)

)
.
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Again, provided a basic approximability property holds, that is, any element of V ×Q can
be approximated by a sequence of elements of (Vh ×Qh)h , convergence will follow under the
assumptions of Theorem 32 or Theorem 34.

7.3. Approximation of augmented saddle-point problems

We now approximate the abstract problem (35), starting from the variational expression (36), with
the form

Ac
(
(u, p), (v, q)

)= a(u, v)+b(v, p)+b(u, q)− c(p, q),

where c(·, ·) is a form defined on Q ×Q that fulfills (34); in particular, c(·, ·) is positive. So, let again
(Vh)h , resp. (Qh)h , be two families of finite dimensional subspaces of V , resp. Q. The discrete
variational formulation writes{

Find (uh , ph) ∈Vh ×Qh such that

∀(vh , qh) ∈Vh ×Qh , Ac
(
(uh , ph), (vh , qh)

)= 〈 f , vh〉V ′,V +〈g , qh〉Q ′,Q ,

To ensure that the form Ac is uniformly Th-coercive, the proofs once more follow very closely
those that were given in the exact case. We give next the discrete counterparts of Theorems 10, 12
and 18.

Theorem 36. Assume that the form a is symmetric, positive, fulfills the uniform discrete coercivity
property (94), and that the uniform discrete inf-sup condition (89) on the form b holds true. Then
the form Ac is uniformly Th-coercive.

Theorem 37. Assume that the form a is symmetric and positive, fulfills the uniform discrete
coercivity property on the kernels (95), and that the uniform discrete inf-sup condition (89) on
the form b holds true. If moreover the form c is like in (39), where ε is small enough, namely

ε≤ 1

2Ca(Cπβ)4C 2
b

(
2− α0

Ca

)
,

then the form Ac is uniformly Th-coercive.

Theorem 38. Assume that (51) holds true and that the bilinear forms a and c are both symmetric
and positive. If there exists a constant α′

B > 0 such that

a(uh ,uh)+ γ

2C 2
c
‖Bhuh‖2

Q ≥α′
B‖uh‖2

V , ∀uh ∈Vh , (96)

then the form Ac is uniformly Th-coercive.

As before, provided a basic approximability property holds, that is, any element of V ×Q can
be approximated by a sequence of elements of (Vh ×Qh)h , convergence will follow under the
assumptions of Theorem 36, Theorem 37 or Theorem 38.

7.4. Applications

Let us briefly see how the T-coercivity approach can be used to discretize the mixed problems,
that is for Stokes, electromagnetism, nearly-incompressible elasticity and finally neutron dif-
fusion. For each problem, we propose one or several possibilities. Note that, since there is a
vast litterature on this topic, there is no need to devise new approximation techniques. On the
contrary, the simple framework of the T-coercivity approach provides elementary guidelines to
help us choose among existing techniques.
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In each case, the first step is to choose a conforming finite element discretization adapted to
the space V under consideration. We assume for simplicity that Ω is a polyhedron for d = 3, or
a polygon for d = 2, so one can use meshes made of simplices for the discretization by finite
elements. For k ≥ 1, Pk stands for the Lagrange finite elements of order k.

For Stokes and elasticity, we note that the space H 1
0(Ω) may be approximated using (Pk )d

finite elements with k ≥ 2. For electromagnetism, we have to deal with the space H 0(curl ;Ω),
which can be discretized using the (first-kind) Nédélec finite elements of order k ≥ 1, denoted by
Nk . Lastly, for neutron diffusion, we have to deal with the space H(div ;Ω), discretized with the
help of the Raviart-Thomas elements of order k ≥ 0, denoted by RT k . We refer to [4] for details.

The next step is to choose the conforming finite element discretization in the space Q in such
a way that convergence of the discrete solutions to the exact one is guaranteed.

First, for Stokes and elasticity, and for k = 2, setting Qh = P1 leads to Fortin operators
ΠP

h : H 1
0(Ω) −→ (Pk )d satisfying (86)-(87), or the abstract counterpart (93): the pair ((P2)d ,P1) is

called the Taylor-Hood finite element. Then, for electromagnetism and for k ≥ 1, setting Qh =Pk

leads to Fortin operators ΠN
h : H 0(curl ;Ω) −→Nk satisfying (93). Last, for neutron diffusion and

for k ≥ 1, one only needs to select Qh in such a way that (90) is fulfilled, namely div(RT k ) ⊂Q ′
h .

To do so, we set Qh = P
pw
k , for k ≥ 0, where the superscript pw stands for piecewise Lagrange

finite elements of order k. We again refer to [4] for details and possible extensions, such as the
generalized Taylor-Hood elements for Stokes or elasticity, for k ≥ 3.

On the other hand, as demonstrated earlier, those properties may be also recovered straight-
forwardly thanks to the T-coercivity approach. As a matter of fact, we can build the discrete op-
erators Th similarly as in the continuous case but changing the constant β to take into account
(when applicable) the influence of the projection operators, see Remark 33.
For Stokes, we refer to (81).
For electromagnetism, we infer from Theorem 34 that the bilinear form defined in (59) is uni-
formly Th-coercive for the mapping

Th : Nk ×Pk −→Nk ×Pk

(E h , p̃h) 7−→
(
(Cπ,N )2E h +ΠN

h (∇p̃h),−(Cπ,N )2p̃h + 3

4
(Cπ,N )4φE h

)
,

where φE h ∈Qh satisfies the discrete counterpart of (65), namely

(ε∇φE h ,∇qh)L2(Ω) = (εE h ,∇qh)L2(Ω), ∀qh ∈Pk .

For nearly-incompressible elasticity, the bilinear form defined in (70) is uniformly Th-coercive for
the mapping

Th : P2 ×P1 −→P2 ×P1

(uh , ph) 7−→ (
2µ(Cπ,P Cdiv )2uh +ΠP

h (v−ph ),−2µ(Cπ,P Cdiv )2ph
)
,

according to Theorem 36 and (71).
Finally, for neutron diffusion, assuming for simplicity thatσ restricted to any simplex is constant,
we introduce the discrete mapping

Th : RT k ×P
pw
k −→RT k ×P

pw
k

(ph ,uh) 7−→
(

ph ,
1

2
(−uh +σ−1div ph)

)
,

and the property div(RT k ) ⊂ P
pw
k guarantees the uniform Th-coercivity of the bilinear form

(76) in virtue of Theorem 38.
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All basic approximability properties are established in [4], which guarantees convergence in
each case.

8. Conclusion and perspectives

We have demonstrated the flexibility of the T-coercivity approach, here applied to classical linear
mixed problems, both for the theoretical study of the problems and for their numerical approxi-
mation by finite elements. Let us mention some possible extensions, such as nonconforming dis-
cretization methods for Stokes [32], multigroup diffusion [28] or DDM for diffusion [24].
It is our belief that numerous applications can be studied with the T-coercivity approach, both
theoretically and numerically. Recent works include application in poromechanics [3], time-
harmonic Maxwell’s equations with impedance surfaces [35], and the applications listed in [31].
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