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Abstract

Neural Radiance Fields (NeRFs) have revolutionized
scene novel view synthesis, offering visually realistic, pre-
cise, and robust implicit reconstructions. While recent ap-
proaches enable NeRF editing, such as object removal, 3D
shape modi�cation, or material property manipulation, the
manual annotation prior to such edits makes the process te-
dious. Additionally, traditional 2D interaction tools lack an
accurate sense of 3D space, preventing precise manipula-
tion and editing of scenes. In this paper, we introduce a
novel approach, calledBlueprintNeural Field (BluNF), to
address these editing issues. BluNF provides a robust and
user-friendly 2D blueprint, enabling intuitive scene edit-
ing. By leveraging implicit neural representation, BluNF
constructs a blueprint of a scene using prior semantic and
depth information. The generated blueprint allows effort-
less editing and manipulation of NeRF representations. We
demonstrate BluNF's editability through an intuitive click-
and-change mechanism, enabling 3D manipulations, such
as masking, appearance modi�cation, and object removal.
Our approach signi�cantly contributes to visual content
creation, paving the way for further research in this area.

1. Introduction

The demand for realistic and taylored 3D scenes is in-
creasing for various applications, ranging from artistic pur-
poses like movie and video game creation to more practical
uses in architecture and design. While traditional methods,
like photogrammetry and light-�eld encoding, have facili-
tated the reconstruction of 3D scenes from multiple view-
points [40, 23], recent advancements in deep learning, such
as Neural Radiance Fields (NeRF) [30, 3, 4, 48] have shown
impressive capabilities in capturing and rendering realistic
scenes. However, editing and manipulating NeRF represen-
tations remains challenging.

Existing works propose various NeRF editing tech-
niques, such as scene composition using multiple
NeRFs [54], manipulation of rendering properties [21], de-
formations through mesh-to-NeRF mappings [55], and ob-

* Equal contribution.

Figure 1: Generating a blueprint from multiple views of a
scene can be challenging. (top) Traditional multiple-view
reconstruction methods (MVR) depend on the diversity of
views, and suffer from occlusions (black areas in MVR
blueprint). Instead, our proposed BluNF addresses these
by leveraging an implicit neural representation of the scene.
(bottom) BluNF associated with NeRF enables scene edit-
ing, such as changes in appearance or texture.

ject removal using user-provided masks [51]. However,
selecting and editing NeRF views present speci�c chal-
lenges, particularly when relying on traditional 2D inter-
action tools that lack a true sense of 3D space (e.g. 2D
screens, keyboards and mice). Especially when considering
the needs of designers/users who often rely on simpli�ed or
partial views of scenes for higher-level semantic manipu-
lation. Blueprints, commonly used in architectural designs,
establish a clear link between the semantic representation of
entities and their underlying geometric structure, providing
a foundation for constructing real scene layouts. Beyond
architectural applications, blueprints �nd utility in diverse
computer vision and graphics applications, including mo-
tion planning [18], navigation [1, 14], and cinematographic
staging [29]. Their use in all these domains highlights the
enduring signi�cance of blueprints as a means of conveying
abstract scene information for various purposes.

In this paper, we present an approach for constructing a



semantic editable blueprint from multiple viewpoints of a
scene by leveraging prior semantic and depth information.
Our novelBlueprint Neural Field module, BluNF, gener-
ates a 2D semantic-aware editable blueprint that is robust
to noise and sparse observations. Notably, BluNF enables
user-friendly editing of NeRF representations. To the best
of our knowledge, we are the �rst to employ an implicit
neural �eld to construct a 2D semantic-aware blueprint for
editing purposes, as most bird's-eye-view methods rely on
CNNs or transformers [25].

First, BluNF is capable of generating blueprints even in
scenarios with incomplete depth or semantic information,
without explicit geometric constraints. It improves robust-
ness compared to multi-view-based methods [16] (MVR) or
straightforward NeRF orthogonal projections (see top-part
Figure 1). Second, BluNF introduces a novel and intuitive
editing approach for NeRF. By providing a concise and in-
formative blueprint, BluNF enables easy editing and ma-
nipulation, including changes in appearance and object re-
moval, achieved through a simpleclick-and-changemecha-
nism, as depicted in bottom-part Figure 1.

Our contributions are: (i) BluNF, a novel module that
generates a blueprint of a scene through an implicit neu-
ral �eld without explicit geometric constraints or super-
vision; (ii) an underlying representation that is robust to
sparse and noisy observations, enabling reliable semantic
layer identi�cation and outperforming multi-view-based or
classical NeRF methods; and (iii) a combination of BluNF
with NeRF representations of the same scene, enabling in-
tuitive user manipulations on the generated 2D blueprint
(masking, appearance, removal), and enabling direct view
rendering with NeRF incorporating the edits.

2. Related work

Implicit Neural Representation. Over the past few
decades, implicit neural representations (INRs) have be-
come popular for representing complex scenes due to their
high ef�ciency, broad capacity, and diverse applications
[27, 30, 24]. Their core idea is to exploit neural network
representations to directly �t the target output by learning
from input data without explicit parameterization. INRs
have been successfully applied to various areas, including
meshes [56, 35], voxels and point clouds [27, 19], and light
�elds [42]. Recently, NeRF [30] has shown success in real-
istic viewpoint reconstructions, synthesizing photorealistic
images of unseen views, while preserving geometric con-
sistency and handling re�ective lighting conditions.

To enhance the learning process and improve the repre-
sentation performance of INRs, numerous techniques have
been introduced: SIREN [43] proposes a periodic activa-
tion function to �t complex and generic natural signals and
derivative information such as images, acoustics, and spatial
data. [46] propose a frequency-based Positional Encoding

(PE) to extract features for improving �tting performance,
especially in high-frequency areas. HashGrid [32] leverages
hash encoding to address the ambiguity and smoothing is-
sues, achieving gain in both �tting performance and training
speed. In our work, we show that choosing the appropriate
encoding scheme can have a substantial impact on the INR
performance (Section 4.2).
NeRF. The original proposal for NeRF was made by
Mildenhall et al [30], with the main contribution of a Po-
sitional Encoding-supported MLP network to encode 5D
spatial and view angle information. The pixel-wise multi-
views image is constrained by computing the ray-based vol-
umetric rendering. Subsequent improvements and deriva-
tives have been proposed in order to enhance the system's
image synthesis performance [4, 3], robustness to sparse
views [33], and support for dynamic scenes [39, 36], etc.
Moreover, NeRF has become a powerful system capable
of producing not only photorealistic rendering images, but
also �tting various genres of applications. For instance, Zhi
et al. [58] propose adding a semantic head parallel to the
RGB one for semantic digit rendering. A similar task is
also investigated in [49], where the main idea is to exploit
the density �eld during the NeRF training.

Recently, [54] shows how to edit disentangled objects by
constructing multiple NeRF models dedicated to each ob-
ject and then combining them for scene rendering. This en-
ables translating, rotating and scaling pre-de�ned objects in
the scene. A similar concept is adapted in [13, 22, 57] by
combining composition functionality with dynamic or se-
mantic scene representations for more detailed user manip-
ulations. GAN-based NeRF systems [41, 34, 8] provide an-
other fresh perspective on the task of generating NeRF, yet
do not enable manipulating pre-trained NeRF. In our work,
we use the proposed BluNF for manipulating and editing a
pre-trained NeRF representation of a scene.
Layout. Scene reconstruction is a longstanding problem
in computer vision and graphics [9, 38, 59], traditionally
tackled with 3D geometry techniques such as SfM [40]
and SLAM [52, 50]. However, with the recent develop-
ment of deep neural networks (DNNs), the reconstruction
problem has evolved to encompass a variety of applica-
tions: from explicit supervised reconstruction [47, 10] to
2D BEV (Bird-Eye-View) extraction for autonomous driv-
ing applications [25, 15], and to INR-based reconstruc-
tion [5]. For reconstruction, various systems are proposed
for different targets, scales [11, 53, 48], and usage scenarios,
ranging from terrain [11, 53, 48] and urban [45] to indoor
scenes [37] or surface reconstruction applications [2]. For
editing, various systems allow for customizations, such as
geometric editing or object removal [54, 55], color or style
changing [17, 21], and generative manipulation [41, 34].

Nevertheless, most editing methods suffer from non-
intuitive handling of 3D content (particularly in NeRF).



Figure 2: Overview of BluNF training pipeline. BluNF
leverages camera parametersK ; R ; t and pixel depthd
to establish a mapping from pixel coordinates(u; v) to
blueprint coordinates(x; y). This mapping is achieved
through the geometric projection module� . The result-
ing blueprint coordinates(x; y) are then fed as inputs to the
neural �eld moduleB� , which predicts the corresponding
semantic label̂s. We use the semantic labels associated to
pixel coordinates(u; v) as supervision target.

This requires users to possess prior knowledge, to pro-
vide semantic masks for each training image [54], man-
ually annotate object contours [26, 31] or indicate a pre-
trained latent code that lacks detailed manipulation [12, 34,
41], or could involve batch operations [17, 21]. Previous
works [12, 7] partially mention the idea of 2D layout for
NeRF scene representation. However, they only focus on
acceleration or latent controlled generation and not speci�-
cally intended for editing or semantic understanding tasks.
Instead, we propose a blueprint neural representation that
enables intuitive and ef�cient manipulation of the layout
when combined with NeRF.

3. Method

In this work, we introduce theBlueprint Neural Field
(BluNF) that generates a 2D semantic-aware blueprint of a
3D scene from sparse semantic views. For a given scene,
a blueprint refers to a top-view semantic �oorplan, as il-
lustrated in Figure 1. In Section 3.1, we show that BluNF
builds on neural implicit learning techniques by mapping
pixel-wise semantic information to corresponding blueprint
semantic labels constrained on a ray-based loss. In Sec-
tion 3.2, we elaborate on how BluNF improves the ef�-
ciency and reliability of scene editing tasks.

3.1. BluNF

Figure 2 provides an overview of the BluNF training
pipeline, illustrating the two main modules: (i) ageomet-
ric projection � and (ii) aneural �eld B� . To begin, we
employ ageometric projection module� to map pixel coor-
dinates(u; v) from input views to 2D blueprint coordinates
(x; y). Next, theneural �eld moduleB� predicts a seman-
tic label ŝ from the input blueprint coordinates. Thereby,
BluNF effectively captures the underlying scene's semantic
information, enabling to build an implicit representation of
the blueprint. Below we detail these two modules.

Figure 3: View-to-blueprint projection. Given an image
view captured by a camera with its intrinsic and extrinsic
parametersK ; R ; t , and a associated depth, the projection
module� projects one pixel's coordinates(u; v), incorpo-
rating the associated depthd back to 3D space(x; y; z). We
then project it onto the XY-plane (�oor) to produce the 2D
blueprint coordinates(x; y).

Projection module. The goal of the projection module is
to transform the camera view coordinates(u; v) to blueprint
coordinates(x; y). Figure 3 illustrates this process. Given
semantic views, we project each pixel coordinate(u; v) 2
JH; W Kalong with its associated semantic labels 2 J1; CsK
onto the 2D semantic blueprint plan, whereCs represents
the number of semantic classes. This projection, denoted as
� , becomes feasible when the intrinsic matrixK 2 R3� 3

and extrinsic matrix[R jt ] 2 R3� 4 associated with the cam-
era view are known, along with the depth. By leveraging
the projection matrix� and the depth valued 2 R at coor-
dinates(u; v), we derive the 3D coordinates(x; y; z) 2 R3:
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Next, by projecting the 3D coordinates onto the �oor –
i.e., theXY plane –, we obtain the corresponding blueprint
coordinates(x; y) 2 R2. Consequently, for all pixel coor-
dinates(u; v) of scene views, we generate the inputs(x; y)
used as training data for the neural �eld module.
Neural �eld module. The neural �eld moduleB� is de-
signed to predict a semantic labelŝ associated with the pro-
jected blueprint coordinates(x; y). B� consists of two sub-
modules: (i) an encoding block that encodes blueprint co-
ordinates(x; y) 2 R2 into a higher-dimensional vector, and
(ii) an MLP that maps the encoded input coordinates to a
predicted semantic labelŝ. As depicted in Figure 2, after the
projection of semantic labels from scene views, the neural
�eld module learns an implicit representation of the scene's
semantic blueprint. We choose to rely on an implicit rep-
resentation due to its robustness and the inherent ability to
handle sparse inputs, as explained in prior works [30, 43].
Training and loss. The BluNF pipeline is trained with a
cross-entropy loss that compares the projected semantic la-



Figure 4: Overview of BluNF editing pipeline. It shows
the process of leveraging a pre-trained BluNF model in con-
junction with user interactions to edit a blueprint represen-
tation. During view rendering with a pre-trained NeRF, the
NeRF samples (orange dots) impacted by the edits are re-
placed by back-projected samples from the edited blueprint
(blue dots) using the inverse projection� � 1 .

bel s associated with the pixel coordinates(u; v) and the
predicted semantic label̂s generated by the neural �eld
module. The parameters� of the MLP are then updated
using standard gradient descent optimization.
Ambiguities. Geometric ambiguities may arise when pro-
jecting pixel coordinates from different views, resulting in
the possibility of two different semantic labels being pro-
jected onto close blueprint coordinates. We incorporated the
coordinate encoder in the neural �eld module to disentangle
these geometric ambiguities, inspired by the encoding in-
troduced in the NeRF paper [30]. By mixing both high- and
low-frequency components, the encoder enables the MLP to
distinguish points more accurately (high-frequency) while
also smoothing out ambiguities (low-frequency).

3.2. BluNF editing

Our BluNF representation is designed to enable user in-
teractions on the blueprint, and when combined with the
corresponding NeRF representation, it enables rendering
any views with the edits. Figure 4 illustrates this process.
The blueprint consists of connected components, represent-
ing groups of pixels belonging to the same semantic class,
forming distinct shapes. Through user selection, these con-
nected components can be modi�ed by assigning new tex-
tures or completely removed from the 3D scene. To incor-
porate the edits, we use the inverse of the projection� � 1 ,
as de�ned in Section 3.1, to back-project the blueprint coor-
dinates affected by the edits onto the 3D space, creating a set
of 3D samples. During rendering, with a pre-trained NeRF
model, we replace affected samples along the rays based on
the back-projected edited samples. These sample replace-
ments can involve adjustments to the color value, density
value, or both. For instance, removing an object entails can-
celling the density value of the corresponding sample.

4. Experiments

Metrics. To evaluate the performance of BluNF, we employ
standard segmentation metrics [28]: pixel accuracy (pAcc)
and frequency-weighted IoU (fwIoU). Additionally, we re-
port the completeness factor (comp.) that measures the ratio
of the valid output area to the total blueprint plan to assess
the completeness of the reconstructed blueprint. To inves-
tigate the robustness of each method against partial obser-
vations, common in reconstruction problems [33, 16, 40],
we report results for each dataset and metric with varying
numbers of input frames(90; 45; 9).
Datasets. We test on four scenes from two 3D indoor
datasets: Replica [44] -room 0referred to asR1, androom
2 referred to asR2-, and MatterPort3D [6] -gZ6f7yhEvPG
referred to asM1, and pLe4wQe7qrGreferred to asM2.
Replica is a synthetic dataset, while MatterPort3D contains
real-world RGB-D information. For both datasets, we man-
ually collect the ground truth blueprints from the given 3D
models by computing the orthogonal projection with care-
fully hand-selected area and culled objects to avoid vertical
occlusion (Figure 5). See supplementary for more details.

4.1. Reconstruction comparison

Compared methods. We compare BluNF to two other
methods: First, the multi-view reconstruction (MVR)
method that directly projects and gathers all pixels in the
dataset to generate the blueprint. Second, theNeRF (top)
method that computes the blueprint by sampling orthogo-
nal rays vertically to the �oor in a pre-trained NeRF un-
der the same input images.NeRF (top)is sensitive to the
height selection: too low height leads to over-trimmed ob-
jects; too high height risks of being in�uenced by in-the-
air or corner artifacts which are less supervised. For a fair
comparison, we report the best fwIoU result among differ-
ent sampled heights. For BluNF, we report results with two
input depth sources: the ground-truth (GT) and the NeRF-
estimated depth (NeRF). Additionally, for all methods, we
use the semantic maps provided in the datasets.
Quantitative results. We compare our proposed BluNF to
both methods mentioned above and report the results in Ta-
ble 1. Overall, we observe that for the four scenes, BluNF
outperforms the other methods for all metrics and all op-
tions, i.e., number of input frames and nature of depth.

More precisely, forReplica scenes: (i) R1(subtable top-
left): BluNF performs the best for both depth options: for
instance, with90frames as input, it reaches pACC of92:6%
and 90:6% with and without ground truth depth, respec-
tively, against88:1% and 88:3% for MVR. (ii) R2 (sub-
table top-right): MVR and BluNF using the ground-truth
depth achieve relatively high scores for all metrics and all
numbers of frames. However, BluNF generally outperforms
MVR, achieving higher scores for pACC, fwIoU, and com-
pleteness across all numbers of frames. For example, us-



Figure 5:Visualizations of generated blueprints for different methodson theReplica - R1(top-left), Replica - R2(top-
right), textitMatterPort3D - M1 (bottom-left) andMatterPort3D - M2(bottom-right) datasets. Each row corresponds to a
method: NeRF top-view, MVR with or without ground-truth depth, and BluNF with or without ground-truth depth. Each
column displays results for a different number of input frames.



Method (depth)
R1 (room 0) R2 (room 2)

pACC" fwIoU " comp." pACC" fwIoU " comp."
# frames 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9

MVR (GT) 88:1 87:0 65:4 82:7 81:7 61:3 95:2 94:1 72:2 60:6 56:6 31:1 53:2 50:3 29:5 51:8 47:9 26:1
BluNF (GT) 92:6 92:7 90:0 86:7 86:9 82:3 100 100 100 71 :9 71:9 58:6 60:9 60:9 49:6 100 100 100

NeRF (top-view) 82:2 80:7 69:2 72:6 71:4 58:4 97:7 97:3 93:1 51:5 40:4 31:2 44:8 34:6 27:3 56:6 49:3 47:4
MVR (NeRF) 88:3 86:8 63:1 81:0 79:5 57:2 99:1 97:8 74:3 46:9 44:3 26:0 38:7 36:4 22:3 48:4 46:2 31:4
BluNF (NeRF) 90:6 90:5 85:5 83:6 83:6 76:6 100 100 100 62 :1 63:9 50:6 51:9 52:9 41:8 100 100 100

(a)Replica dataset.

Method (depth)
M1 (gZ6f7yhEvPG) M2 (pLe4wQe7qrG)

pACC" fwIoU " comp." pACC" fwIoU " comp."
# frames 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9

MVR (GT) 87:8 86:8 73:1 82:8 81:9 69:4 90:3 89:1 74:7 81:5 80:3 65:5 76:5 75:3 61:6 77:4 76:5 64:4
BluNF (GT) 89:0 89:1 84:2 82:9 82:9 76:5 100 100 100 87 :4 87:6 82:8 80:7 80:9 75:5 100 100 100

NeRF (top-view) 80:3 80:0 73:1 73:0 72:0 64:9 100 100 100 62 :5 62:8 59:5 49:0 49:5 47:4 100 100 100
MVR (NeRF) 62:0 61:3 54:5 54:5 53:9 47:7 95:5 95:2 90:5 52:3 52:5 45:9 42:9 43:1 36:9 87:3 86:8 76:9
BluNF (NeRF) 67:9 67:9 64:2 59:0 59:4 56:5 100 100 100 62:0 62:3 57:3 53:0 53:1 47:2 100 100 100

(b) MatterPort3D dataset.

Table 1: Comparison to the state of the art onReplica(a) and MatterPort3D (b) for varying number of frames (90,
45,9).For both subtables, we report results for 2 scenes (left and right), the top part corresponds to results with ground-truth
depth (GT), and the bottom part without, i.e., it uses the estimated-by-NeRF depth.

ing 90 frames, BluNF achieves pACC, fwIoU, and com-
pleteness scores of71:9%, 60:9%, and100%, respectively,
while MVR achieves scores of60:6%, 53:2%, and51:8%,
respectively. ForMatterPort3D scenes: (i) M1 (subtable
bottom-left): with ground-truth depth (GT), BluNF is also
better than MVR for both pACC and fwIoU; for instance, at
90 frames it reaches89:0% and82:9% against87:8% and
82:8%, for both metrics respectively. When using NeRF-
estimated depth, even though BluNF outperforms MVR
by +9 :7% in pACC and+8 :8% in fwIoU for 9 frames;
NeRF (top)performs the best with73:1% of pACC and
64:9%for 9 frames as well. (i)M2 (subtable bottom-right):
with ground-truth depth, the results are similar, with BluNF
again outperforming MVR for all metrics and numbers of
frames. Interestingly, the scores are in most cases lower for
MatterPort3D scenes than for Replica scenes. We attribute
this discrepancy to the intrinsic quality differences between
the datasets. The MatterPort3D datasets rely on RGB-D ac-
quisitions that vary in quality, resulting in a relatively poorer
quality overall. For a more detailed discussion on this mat-
ter, please refer to the supplementary material.

Qualitative results. Figure 5 shows visual results of all
methods for both datasets. It highlights the failure of other
methods, notably MVR, and especially when the number
of frames is low (blacks areas in blueprints in rows 1, 2,
6, 7; columns 3, 6). Moreover, we note the high quality
of BluNF-generated blueprint (row 5, 10; columns 1, 4), in
contrast to the others (rows 2, 3, 7, 8; columns 1, 4).
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Figure 6:Ablation of number of input frames for BluNF
and MVR on Replica-R1 [44]. BluNF outperforms MVR
in all metrics for all input frame numbers. Their gap is more
notable when reducing to few input frames, i.e., less than 5.

4.2. Ablation study

In this section, we present the results of four ablation
studies to highlight the in�uence of: (i) the number of
frames; (ii) the impact of depth; (iii) the analysis of com-
pleteness; (iv) the different types of encoding. Most dis-
cussions and ablations are presented with the Replica R1
dataset, unless stated otherwise.



Number of Frames. The number of frames is a critical
factor for almost all reconstruction methods, including both
geometric-based and learning-based approaches [33, 40]. A
low overlapping of multi-view information can lead to miss-
ing parts or erroneous estimations. In Figure 6, we compare
BluNF against MVR for different number of frames gradu-
ally reduced from 900 to 1 for ReplicaR1. We observe that
our BluNF outperforms MVR for all metrics. Speci�cally,
when the number of frames is high (e.g. some hundreds),
both methods perform similarly for all metrics. However,
the more the number of frames reduces, the more the gap
between the two methods increases. This gap becomes even
more pronounced when the number of frames is very low
(e.g., fewer than 5 frames). This highlights the fact that
leveraging the �lling capacity of implicit representations
used by BluNF leads to signi�cantly better performance.
We also observe this trend in Table 1a.

Impact of depth. Here, we examine the impact of depth
on our proposed BluNF by comparing the performance of
BluNF with GT and NeRF-based depths, i.e., rows 2 and
5 in Table 1a and 1b. ForReplica datasetR1, the nature
of depth (GT or NeRF-estimated) does not in�uence much
the performances of BluNF. Between ground-truth and esti-
mated depth, BluNF drop around5% of pACC and fwIoU.
ForMatterPort3D M1, the impact of depth is more promi-
nent: the fwIoU of BluNF with 45 frames decreases from
82:9% with ground truth depth to59:4% without. Those
two behaviours can be explained by the contrasted quality
between the synthetic and real-acquired depth information.
Refer to the supplementary material for more details.

Analysis of completeness. Regarding completeness,
BluNF exploits a continuous neural �eld and therefore its
completeness is always maximum (100%). Nevertheless,
note that for MVR this is an important drawback, and it gets
worse when the number of frames decreases. For Replica
R1 in Table 1a,MVR (GT)completeness decreases from
95:2%with 90frames, to72:2%with 9 frames. In addition,
it is interesting to see that NeRF-estimated depth increases
the completeness of MVR. For instance, on MatterPort3D
M1 in Table 1b with9 frames, it increases from74:7%with
ground truth, to90:5% without. It is explained by the er-
ror on the estimated depth, making the projection fuzzy, yet
less accurate. Note thatNeRF (top)achieves full complete-
ness on MatterPort3D as there is no ceiling semantic class,
on the contrary of Replica, polluted by ceiling predictions.

BluNF input encoding. We compare in Table 2 the effec-
tiveness of different types of encoding: (i) no encoding; (ii)
the hash encoding from Instant-NGP [32]; (iii) a SIREN-
based BluNF [43]; and (iv) the standard positional encod-
ing (PE) introduced in NeRF [30]. Firstly, the results val-
idate our claim in Section 3.1 that encoding helps to dis-
entangle the geometric ambiguities associated with the pro-
jection module. Speci�cally, there is a signi�cant gap of

Encoding type pACC" fwIoU "
Number of frames 90 45 9 90 45 9

No encoding 85:4 85:5 73:3 77:0 76:2 63:0
Hash 91:8 91:6 84:8 85:2 84:9 73:9
SIREN 91:0 91:0 84:5 84:1 84:2 75:2
PE 92:6 92:7 90:0 86:7 86:9 82:3

Table 2: Ablations of coordinate encodingin BluNF on
ReplicaR1with ground-truth depth.

(a) w/o PE (b) w/ PE

Figure 7: Visual comparison of different input encod-
ings. (a) Result with positional encoding (PE), and (b) re-
sult without positional encoding (w/o PE).

up to 19:6% in fwIoU between with and without PE en-
coding schemes when using 9 input frames. In addition,
these results show that with a high number of frames, the
encoding type does not affect the results; the difference of
pACC and fwIoU between the different encoding is around
� 1%. Nevertheless, when the number of frames decreases,
HashandSIRENare highly impacted. For instance for9
frames, we report a pACC of84:8%and84:5%and a fwIoU
of 73:9% and 75:2% respectively. In contrastPE seems
much less impacted with an pACC of90:0% and a fwIoU
of 82:3%. Figure 7 presents a visual comparison of the in-
�uence of input encoding on the resulting blueprints. We
compare blueprints generated with and without positional
encoding. The comparison provides evidence supporting
our claim from Section 3.1 that positional encoding helps
disentangle projection ambiguities. Blueprint with PE ex-
hibits enhanced detail and accuracy, while those without en-
coding lack detail and are dominated by ambiguous shapes.

4.3. Editing comparison

Comparison to baselines. In this work, we compare
our BluNF editing pipeline with two baselines based on
semantic-NeRF [58]. The �rst baseline involves the user
choosing a semantic class to edit for the entire scene and
using the rendered semantic view of semantic-NeRF as a
mask to apply edits on the RGB view. However, as shown in
Figure 8, this approach has several drawbacks compared to
our proposed method BluNF. Speci�cally, as demonstrated
by the blue arrow the two armchairs are selected due to be-
longing to the same semantic class. In contrast, BluNF en-



Figure 8: Editing result comparison. (Top) Semantic-
NeRF-based editing results and (bottom) our proposed
BluNF editing result.

ables us to select speci�c instances within the same seman-
tic class. Additionally, the purple zoom illustrates that us-
ing every pixel of the same semantic class leads to artifacts
intrinsic to semantic-NeRF, while BluNF, relying on con-
nected components, avoids selecting these artifacts, high-
lighting the �exibility of BluNF. The second baseline in-
volves using the same mask selection as in BluNF, requiring
the user to select connected components for each semantic
view. However, this approach is impractical as it would de-
mand the user to manually select connected components for
all frames, emphasizing the generalization power of BluNF.

Qualitative results. Here we present the results of the
BluNF editing pipeline introduced in Section 3.2. Figure 9
illustrates the outcomes, where the �rst column shows the
selected blueprint area for each application, while the sec-
ond and third columns illustrate two different synthesized
views. The applications we showcase areObject selec-
tion/masking: Our system enables the user to select in-
stances for editing by clicking on the generated blueprint.
Grouped instance is able to back-project to 3D as a high-
quality dynamic mask;Object recoloring: The user can
change the color of the selected area by simply applying
color blending;Prompt Re-texturing: The user can gen-
erate a 2D texture from a text-prompt with an external
model [20]. Our system supports direct 2D textured map-
ping on the blueprint, which can be printed on the surface of
selected objects;Sketching: Our system supports sketch-
ing or painting for editing instances;Instance Removal:
Our system supports primitive instance removal by setting
the density of the selected area to zero without requiring
re-training of the NeRF. In the last row, we show that we re-
move a vase from the table by selecting it on the blueprint.

Figure 9: Show cases of applications enabled by
BluNF. Examples of masking, recoloring, prompting, hand-
sketching and instance removal.

5. Conclusion

In this work, we introduced BluNF, a novel module ca-
pable of generating 2D semantic-aware editable blueprints
of scenes. By leveraging implicit learning with seman-
tic and depth priors, BluNF demonstrates superior perfor-
mance compared to geometric and semantic NeRF-based
methods. BluNF combined with NeRF allows various intu-
itive editing applications. It bridges the gap left by standard
editing methods, limited by their lack of 3D spatial under-
standing when relying on traditional 2D interaction tools.
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