
HAL Id: hal-04250608
https://hal.ip-paris.fr/hal-04250608

Submitted on 19 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Navigation among movable obstacles using machine
learning based total time cost optimization

Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto, David Filliat

To cite this version:
Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto, David Filliat. Navigation among movable
obstacles using machine learning based total time cost optimization. IROS 2023 - IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Oct 2023, Detroit (MI), United States.
�hal-04250608�

https://hal.ip-paris.fr/hal-04250608
https://hal.archives-ouvertes.fr

Navigation among movable obstacles using machine learning based total
time cost optimization

Kai Zhang1,2, Eric Lucet1, Julien Alexandre dit Sandretto2 and David Filliat2

Abstract— Most navigation approaches treat obstacles as
static objects and choose to bypass them. However, the detour
could be costly or could lead to failures in indoor envi-
ronments. The recently developed navigation among movable
obstacles (NAMO) methods prefer to remove all the movable
obstacles blocking the way, which might be not the best choice
when planning and moving obstacles takes a long time. We
propose a pipeline where the robot solves the NAMO problems
by optimizing the total time to reach the goal. This is achieved
by a supervised learning approach that can predict the time of
planning and performing obstacle motion before actually doing
it if this leads to faster goal reaching. Besides, a pose generator
based on reinforcement learning is proposed to decide where
the robot can move the obstacle. The method is evaluated in two
kinds of simulation environments and the results demonstrate
its advantages compared to the classical bypass and obstacle
removal strategies.

I. INTRODUCTION
The problem of navigating among static and dynamic

obstacles in robotics has many efficient solutions. However,
most of the navigation algorithms are designed to avoid all
the obstacles even when they are movable like bottles or
bags. This can sometimes produce long detour or simply
prevent goal reaching, for example when the robot finds
a closed door. The field of Navigation Among Movable
Obstacles (NAMO) provides solutions by planning actions
to remove these kinds of obstacles [1]. In particular, recent
approaches seek to integrate machine learning and traditional
planning to get the best out of these two approaches [2].

The real interest of moving an obstacle in NAMO is often
overlooked. Many algorithms plan the shortest path without
consideration of movable obstacles, then follow the trajectory
and remove the obstacles encountered. This raises a question
whether this decision is wise in all the cases, especially when
the detour is short and easy. While there are several costs that
can be optimized, such as the travel distance, the energy cost,
or the safety, we focus on the total time of reaching the goal
which includes both planning and motion execution time.
This is particularly important as the planning and execution
time for obstacle displacement is usually much higher and
variable than the time required to recompute and follow a
detour. Therefore, to minimize total time, we must estimate
the duration of each alternative to choose the fastest.

A first problem in NAMO is the decision on where to put
the movable object as it takes most of the planning time and
has an important impact on execution time. This problem is

Website: kai-zhang-er.github.io/namo-time-cost
1 List, CEA, Université Paris-Saclay, Palaiseau, France

kai.zhang@cea.fr
2 U2IS, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France

often solved by sampling candidate positions [3] which is
time consuming and can present large variation in execution
time. Additionally, the target position should free the robot
path, but can also take other constraints into account, such
as a social cost related to the fact that some positions will
impact more on the navigation of humans or other robots and
should be avoided [4]. We use Reinforcement Learning (RL)
to have a fast decision on where the obstacle should be
moved by taking all these constraints into account.

Following this choice, optimizing the total time requires to
compare the planning and execution time for both detour and
obstacle displacement. While the detour is usually very fast
to plan and its execution time is easily predictable, it is more
difficult for object displacement, as the planning often relies
once again on sampling. We therefore propose a supervised
learning approach that predicts the total time required to
plan and execute obstacle displacement based on the robot’s
observation of the situation and the target position for the
obstacle. This makes it possible to precisely choose between
a detour and a movement of the obstacle without actually
performing the motion planning before we have verified that
the total cost is lower.

In summary, the main contributions of our work are:
1) a framework for NAMO that minimizes time con-

sumption by integrating learning-based and classical
planning methods to take advantage of their strengths.

2) a method to propose a pose to unload the movable
obstacle based on deep RL with consideration of the
navigation cost and social context.

3) an approach to predict the total time of removing a
movable obstacle before actually performing it.

4) an extensive evaluation of our approach in a simple
simulation environment and a demonstration of its
scalability on a more realistic Gazebo [5] simulation.

In the remaining parts of the paper, we first introduce the
related work on the NAMO task in section II, describe our
approach in section III and present the experiment details and
simulation environments, as well as the results in section IV.

II. RELATED WORK

We review path planning in dynamic environments, before
focusing on NAMO and specifically stock region search.

A. Path planning in dynamic environments

Classical path planning algorithms such as A* or Rapidly-
Exploring Random Trees (RRT) , usually take all the ob-
stacles as non-interactive objects and plan paths to avoid
collisions. However they are not directly adapted to dynamic

https://kai-zhang-er.github.io/namo-time-cost/

Fig. 1. Overview of our method. It includes three modules (yellow regions): stock region position prediction, cost estimation and interaction planning. It
starts from path planning and iterates until the robot arrives at the destination.

environments and methods such as the dynamic window
approach (DWA) [6] avoid the collisions with mobile obsta-
cles while following the global path. In social environments
with humans, the methods can be improved to take social
constraints into account. For example, in [7], a RL-based
DWA avoids pedestrians by passing behind them.

B. NAMO algorithms

NAMO includes movable obstacles beside the static and
dynamic obstacles. The algorithms require two additional
modules to detect and interact with these obstacles.

There are three solutions to identify the movable obsta-
cles. The simplest one is to take the information as prior
knowledge, as in [8]. The second is to use sensors, such as
cameras in [9], to detect objects and recognize the movable
ones. The third solution is based on detecting the moving-
affordance [10], by interacting with the obstacle to check if
it can move.

There are various possible interactions such as pick-and-
place, push or pull. For example, in [11], the robot pushes
boxes away until a feasible path can be planned to the goal.
However, pushing is not safe especially in partially observ-
able environment, because there may be another obstacle
behind. In contrast, the pull and pick actions are safer as
the working space is visible, as in [10] where a small bottle
is picked to free the path. Nevertheless, the pick and place
are limited to small and graspable objects.

Most NAMO algorithms give priority to remove the ob-
stacle over planning a detour. For example, in [12], the robot
follows its path and removes all the encountered obstacles. In
the same way, in [11], when meeting an obstacle, the robot
interacts with it to check the moving affordance and a detour
is planned only when the obstacle is not movable.

In this paper, we use simple movable obstacle detection
approaches and pull actions, and focus on more efficient
removal or bypass decision-making strategies.

C. Stock region searching

Few works consider the final position of the moved
obstacle (called stock region). A common idea is to move it
out of the path [8] or until a feasible detour is found [13],
[14], but they do not consider the impact of final position of
the obstacle on the future danger. However, [15] searches the
stock region by minimizing the displacement of the movable

obstacle out of the planned path, and [4], working in dynamic
environments, designs a social cost to measure the impact of
the stock region: it is expected not to be in the middle of
corridors and narrow regions. We propose a new RL based
approach to quickly find positions with the same objective.

III. METHOD

We start with the introduction of the task and overview of
the method, before detailing our main contributions.

A. Task description and method overview

The task is defined by the navigation goal and the global
map for static obstacles. We are in the NAMO context where
the robot can interact with movable obstacles if necessary,
but we assume a static environment without dynamic obsta-
cles. Our objective is to minimize the task-completion time
which includes both planning and execution time.

As shown in Fig. 1, the method mainly includes three
modules: stock region position prediction, cost estimation
and interaction planning. Firstly, task description is used to
plan a shortest-path. During path following, the robot detects
unexpected (i.e., movable) obstacles within a fixed range (as
explained in section IV). Upon such detection, it chooses
either to bypass or to remove them by estimating the cost
of each option and pick the smallest one. To predict the
removal cost, the stock region is first generated by our pose
generator, and the removal cost is predicted by our supervised
algorithm. To predict the bypass cost, the shortest detour
trajectory taking the unexpected obstacle into account is
computed. If the decision is to move the obstacle, the actual
planning of the interactions to remove obstacles is performed
and executed. Afterward, the robot resumes path following.

B. Stock region prediction

A suitable stock region should be proposed to put the
obstacle to free the path. Instead of defining a fixed stock
region for all movable obstacles, a stock region proposal
method generates a pose to store each movable obstacle by
considering moving distance and social cost.

The stock region proposal is based on RL to train a policy
that will propose optimal obstacle displacements to a safe
region. As illustrated in Fig. 2, the input of the policy consists
of a set of three local maps:

Fig. 2. Policy for stock region prediction. See text for details.

• The path map is generated from the shortest-path trajec-
tory with a dilation radius equal to the robot radius. The
dilated path is marked as zeros on a ones background.
The local path map, Mpath, is cropped from the path
map around the stock region position.

• The obstacle envelope map Menve encodes the shape of
the obstacle in ones on zeros background, which also
indicates the minimum size of the stock region.

• The visibility map is generated from the Lidar data ob-
served at the robot pose. The zeros region corresponds
to obstacles or invisible region that is unsafe to set the
stock region, while the ones area is clear space. Then,
the local visibility map, Mvisi, is obtained by cropping
the visibility map around the stock region.

The local map size is set to 80 × 80 pixels, equivalent
to 2× 2 meters, which is determined by the sensor range
at which movable obstacles can be reliably detected. Larger
visibility map could be used in more complex environments
but would require more training and computation time. These
three maps are stacked in a tensor and inputted into a policy
network to propose an action a indicating the movement of
the stock region. The network consists of two parts, a set
of two convolution layers (Conv2D) followed by two fully
connected layers (FC) (see appendix for details).

There are four actions: a ∈ {up, le f t,right,down}. The
stock region moves in the 2D map with a fixed distance
(2 pixels in our experiments) in the direction of a. Then,
Mvisi and Mpath translate along the direction of a. The initial
pose of stock region is the same as the obstacle pose. The
iteration stops when the final pose of the stock region satisfies
the following constraints:

1) The stock region should be in the clear region, which
means its envelop has no overlap with the obstacle or
invisible region shown in the visibility map. In other
words, Menve ∧Mvisi = Menve

2) The stock region shouldn’t block the navigation path.
In other words, the white region in envelop map has
no intersection with the black region in path map. In
other words, Menve ∧Mpath = Menve

The reward at step t for RL is defined as:

rt =

−5 if Menve ∧Mvisi ∧Mpath ̸= Menve

0 if success
psoc(x,y)+ pstep otherwise

(1)

where psoc is the social penalty [4] of the current posi-
tion (x,y) and pstep is a fixed step penalty (−1 in our
experiments). The objective of applying social cost is to
avoid putting the obstacle in narrow passage and in the
middle of corridors. It has two advantages: it reduces the
risks of collision when the robot continues navigating to the
destination, and it results in less risks when there are people
or other dynamic obstacles in the environment. The social
cost map is generated from the obstacle map using:

psoc(x,y) =− fconv(dallow(x,y)) (2)

dallow = 2×dobs(x,y) (3)

where fconv is a conversion function defined in [4] to map
space allowance dallow to social cost. The dobs(x,y) is the
distance from (x,y) to the closest obstacle. Because the social
cost is between 0 and 1, it’s negative value is taken as psoc.

The policy network is trained on a set of randomly
generated situations (see details in section IV-A.2) with
Proximal Policy Iteration (PPO) [16] using the default setting
given in the paper (see details in appendix). In the prediction
step, i.e. during navigation of the robot, the stock region
is proposed by applying the learned policy a maximum of
N times starting from the observed situation and stopping
when all the constraints are met. The termination pose is the
proposed stock region that will be used for estimating the
obstacle removal cost. If it fails to find a valid stock region,
the removal cost is set to infinite.

C. Cost estimation and decision making

This module aims to estimate the cost of bypassing or
removing the obstacle, and select the appropriate action. For
bypassing the obstacle, the movable obstacle is temporarily
added to the obstacle map, and the shortest-path planner
generates an alternative path. If there is no alternative, the
cost is set at infinity. If there is, the average robot speed is
used to compute the cost from the path length.

Fig. 3. Neural network for removal cost estimation. See text for details.

For the removal cost, we use a simple neural network
consisting of three Conv2D and three FC layers to predict
the cost based on the environment map (Fig. 3, see details in
appendix). Centered at the robot, the local obstacle map Mobs
is cropped from the global map. The initial pose of obstacle

and predicted stock region pose are converted to binary
masks by setting the obstacle as one and the background
as zero. These three binary masks are fed into the network
to give the predicted cost value ĉ.

The training dataset consists of a set of quadruples (robot
position, obstacle position, stock region position and time
consumption c) randomly generated from a predefined ob-
stacle map. We randomly generate robot positions around
the movable obstacle and apply the stock region prediction
method to find the stock region position. The robot motion
is planned and executed to move the obstacle to the stock
region (see section III-D). The total planning and execution
time c is recorded.

In the testing step, when the robot encounters a movable
obstacle, this trained network is used to predict the time for
obstacle displacement. This time is added to the time of the
remaining trajectory to reach the goal. Finally, the bypassing
cost is compared with the predicted obstacle removal cost
and the smaller one is chosen as the strategy to apply.

D. Interaction planning

The interaction planning module includes action sequence
generation and motion planning. For obstacle removal, the
generator produces a sequence of abstract actions along
with the configurations. Then, the motion planner converts
the abstract actions into control parameters, like linear and
angular speeds which are then executed.

The action sequence generator uses PDDLStream [17]. We
define abstract actions Ai, i = 1, ...,m (m = 3 in our case),
each consisting of the name, precondition and effect. For
example, the Nav action from position P1 to P2 is:

Nav(P1,P2)
Pre: (atPos(P1)) (not(atPos(P2)))
Eff: (atPos(P2)) (not(atPos(P1)))

Similarly, we define the actions Load and Unload signifying
the attachment and detachment of obstacle with the robot.
Then, we describe the initial state S0 and goal state Sg of
the environment. Here, we limit the planning region to a
local area instead of the global environment for the purpose
of efficiency. Afterward, the environment description along
with the action operators are transferred to the planner of
PDDLStream to produce a solution as a sequence of actions
with parameters:

{a1,,a j}= PDDLStream(S0,Sg) (4)

A motion controller generates the control commands for
each actions with its parameters. For the Nav operation,
we use A* to plan the path, then the robot follows the
trajectory through a PID controller. For the Load and Unload
operations, the inverse-kinematic controller calculates the
configuration of each joint of the arm and a PID is applied
to control the action.

IV. EXPERIMENTAL RESULTS
We present experiments with two simulation environ-

ments: one using Pybullet [18] and one using Gazebo [5],
which is more realistic. Beside the comparison of the whole

NAMO results, we evaluate the performance of our stock
region proposal and cost estimator.

A. Pybullet simulation

Pybullet is a simplified but fast simulation environment
that we use to demonstrate the robustness of our method on
various configurations and compare it to other methods.

Fig. 4. Our two Pybullet environments. Robot starts randomly from the
start region and its goal (red square) is randomly chosen from the goal
region. The green rectangle is the movable object and the blue rectangle is
the stock region for a specific episode.

1) Environment description: Two simulation environ-
ments are used (Fig. 4). In each experiment, the starting point
and goal are chosen randomly from the start region and goal
regions. The movable obstacle is a small box that can be
moved by the robot. We use a PR2 robot equipped with a
Lidar sensor, which can identify and localize the movable
obstacle with a provided object id. Since it is impossible to
detect whether there are other obstacles behind the movable
obstacle, we limit actions to pulling the obstacle and putting
it in the visible free region.

Fig. 5. Two of the four training cases for stock region proposal network.
The other two are similar but with exchanged start and goal regions.

2) Stock region proposal results: Following the method
described in section III-B, the proposal network is trained
under different cases to learn the pose generation policy. We
design four scenarios shown in Fig. 5. At each episode, an
instance is created by planning from a random start point
to a random goal in a randomly chosen environment. The
training takes around 5 hours for 100000 steps.

We evaluate our trained policy on 300 test cases with
random start and goal positions and compare it with a brute-
force search method. This search method is implemented
by searching all the points from the visible region and
selecting the one closest to the initial position of the movable
obstacle in order to give a performance upper bound. We also
compare to a sampling method which intends to balance the
search time and performance by picking several points before

searching. We also compare these methods with the social
cost considered, which seeks a point with minimum weighted
sum of navigation cost and social cost. The results are
presented in Table I and Fig. 6. Three criteria are reported:
average moving distance (AMD), average social cost (ASC)
at proposed position and average prediction time (APT).
When analyzing the impact of social cost on our RL method,
we find that with the consideration of social cost, the network
proposes stock region closer to the wall which reduces the
risk of future collision. Besides, comparing to search method,
the stock region proposed by our RL method is closer to the
initial position, which means less navigation cost. What’s
more, our RL approach requires a much smaller computation
time even compared with the sampling method. In these
scenarios all the above methods could find a stock region
for each test case. We could imagine failure at producing a
stock regions in more complex environments which would
lead to our approach choosing to bypass obstacles.

TABLE I
QUANTITATIVE COMPARISON OF STOCK REGION PROPOSAL METHODS.

SEE TEXT FOR LEGENDS.

Method AMD ASC APT
RL (w/o scost) 0.95 0.43 0.02

Search (w/o scost) 0.32 0.62 0.53
RL (w scost) 1.32 0.28 0.02

Search mthod (w scost) 1.52 0.20 0.54
Sampling (w scost) 1.47 0.23 0.47

Fig. 6. Left: map and social cost generated by the method in [4] (brighter
is higher). Right: Footprints of proposed stock region (blue points).

3) Cost prediction results: We collect 100 samples as the
dataset to train and evaluate our cost estimator following the
methods in section III-C. 80 samples are used for training
and 20 for evaluation by measuring the average absolute
difference Dabs between the estimated cost values ĉ and true
values c:

Dabs =
N

∑
i
|ci − ĉi|/N (5)

We measured Dabs = 0.6s, which is relatively small com-
pared to the average time of 5.03s. It is better than a simple

predictor using the average time of the training dataset as a
prediction (Davg = 0.8s). This shows that our cost estimator
can take the situation into account to predict the cost.

Fig. 7. Demonstration of different NAMO strategy

TABLE II
AVERAGE TIMINGS ON 100 TEST EXAMPLES.

Priority bypass (s) Priority removal (s) Our method (s)
Env. Total Planning Total Planning Total Planning

a 17.8±8.7 0.9±0.03 16.0±6.8 0.2±0.01 15.3±6.4 1.3±0.03
b 28.2±9.7 0.8±0.01 18.1±3.0 0.2±0.01 18.7±2.5 1.1±0.05
c 18.7±3.7 0.7±0.04 16.5±2.9 0.2±0.01 16.2±2.7 1.0±0.09
d 22.3±1.4 1.0±0.02 15.0±2.5 0.2±0.01 14.8±1.9 1.3±0.02
e 15.3±2.3 0.6±0.03 16.2±3.2 0.2±0.01 15.3±2.3 0.8±0.03
f 23.4±1.2 1.1±0.01 21.0±2.3 0.5±0.04 18.0±1.8 1.4±0.08

4) NAMO results: We compare our method with two
other NAMO strategies: priority bypass and priority removal.
Priority bypass strategy stands for most of the classical
navigation methods. On the contrary, the priority removal
strategy is widely applied in recent NAMO algorithms [11],
[10]. Fig. 7 shows examples trajectories when the robot
adopts these different NAMO strategies with two obstacles.
In the third figure, our method compares the cost of bypass
and removal each time, and chooses to remove the first
obstacle and bypass the second one for the purpose of
minimizing the time cost.

The average total navigation time and planning time of
each method is in Table II for six different tasks (Fig. 8).
In environment (a-e), our method outperforms the priority
bypass method by taking less time to accomplish the task,
especially in environment b and d since the detour is
quite long and time consuming. Comparing with priority
remove, both methods have similar performance because the
removal of obstacle tends to be less costly than the detour.
In environment e, when the detour becomes shorter, our
method demonstrates its advantage by adapting the decision
according to the task. In environment f, we evaluate the
multiple obstacle case where our method tends to remove
the first obstacle and bypass the second one, which is faster.
We also observe the stability of our method which achieves
the tasks with a smaller standard deviation.

B. Gazebo simulation

The Gazebo simulation aims to validate the scalability of
the proposed method in a more realistic environment. For
example, it adds the sensor noise and the action uncertainty,
which exist in real world but are not considered in the
Pybullet environment.

Fig. 8. Evaluation environments referred in table II for NAMO tasks. The green box is the movable obstacle while black areas are static obstacles.

Fig. 9. Test environments in Gazebo. All the objects are static except the
small white boxes in the passage that are movable. The goal is in red. There
is one movable obstacle in env. A and two in env. B and C.

1) Environment description: We design 3 environments
(Fig. 9) and use a Clearpath Jackal robot with an arm at
its bottom that can load/unload the obstacle. The movable
obstacles are detected and localized through a camera on
the robot using an ARTag placed on the obstacle. Besides, a
Lidar is used to detect static obstacles and localize the robot.

2) Stock region proposal: We re-use the model trained in
the Pybullet environment for stock region prediction as the
input of the network are binary images (Fig. 2) which are
strongly independent of the simulator.

3) Cost prediction: To collect the training dataset for
cost estimation, we randomly sample starting points in the
environment and a collision free goal around the start point
at a distance of 2 meters. We plan the shortest path using A*
and put a movable obstacle on the middle point of the path.
When the robot starts, it estimates the obstacle’s pose and
plans the interaction sequence, which includes nav, load and
unload. We count the time until the obstacle is unloaded.

Due to the uncertainty and noise during the movement of
the robot, we preprocess the collected dataset by removing
failed obstacle displacements. We obtain 118 samples; 98 of
them are used for training and 20 for testing. We reach an
average difference Dabs = 0.4s that is 2.1% of the average
removal time (19.1s). In contrast, the average time predictor
reaches a much lower performance of Dabs = 2.5s.

4) NAMO results: We show two examples in Fig. 10.
The first row shows that, in a large free environment, the
algorithm chooses to bypass the obstacle to save time. In the

Fig. 10. Qualitative results of different interaction strategies. The blue
arrow shows the initially planned shortest path to the goal. The first row
shows an example of bypass strategy while the second row shows an
example of removal strategy, that are automatically selected by our approach
based on environment context. The first column is the start state, the second
one shows the interaction while the last one shows the termination state.

second row, in a narrow passage, the algorithm chooses to
move the obstacle as the detour is too costly.

TABLE III
QUANTITATIVE COMPARISON ON AVERAGE TIME COST ON 10 TEST

EXAMPLES IN GAZEBO.

Env. Priority bypass (s) Priority removal (s) Our method (s)
A 76.6±3.1 53.0±3.4 54.0±2.3
B 76.5±4.2 68.9±2.3 60.6±2.4
C - 105.1±8.6 95.8±6.1

In addition to the qualitative results, we measure the
average time cost of different strategies (Table III) for the
tasks shown in Fig. 9. In environment A, due to the long
detour, our method chooses to remove the obstacle then
navigates to the goal, which is the same as the priority
removal. In contrast, the priority bypass at this case is
very costly and it takes 20 seconds longer than ours. In
environment B and C, our method chooses to remove the
first obstacle and bypass the second one. Differently, the
priority removal removes the two movable obstacles, which
takes more time to reach the goal. The priority bypass fails at
finding a detour for the first obstacle in environment C so this
strategy cannot deal with such case. In addition, the standard
deviation of time cost in the three environments shows that
our method achieves better stability with a reduced variance
in most cases. In summary, our method outperforms the other
methods that follow predefined strategies by proposing more

adaptive decisions.

V. CONCLUSION AND FUTURE WORK

We present a framework to solve the NAMO problem
while minimizing goal reaching time. The proposed method
integrates learning-based methods to make decision on in-
teraction strategies when a movable obstacle blocks the
path. Besides, a stock region proposal method generates the
storage position of a movable obstacle with consideration
of social cost and navigation cost. Two types of simulation
environments are presented to demonstrate its effectiveness
and scalability.

Our future work will focus on extending the approach to
deal with dynamic obstacles such as pedestrians as well as
the corresponding collision avoidance modules. Besides, we
will work on solving the uncertainty in the NAMO tasks,
such as the observation noise and action uncertainties. In
our Gazebo simulation, the observation uncertainty leads to
localization error, which occasionally results in collision with
obstacles and failure when the robot loads the obstacle. In
addition, the control algorithm produces perturbation when
the robot rotates and the carried obstacle can fall off the arm.
To tackle these problems, we plan to integrate a replanning
module which would control the robot to pick the fallen
obstacle. Finally, the complete method will be deployed
on a real mobile robot and evaluated in a more complex
environment.

ACKNOWLEDGMENT

This work was part of the OTPaaS project with French
government funding from the “Cloud Acceleration Strategy”.

REFERENCES

[1] H.-n. Wu, M. Levihn, and M. Stilman, “Navigation among movable
obstacles in unknown environments,” in 2010 IEEE/RSJ IROS. IEEE,
2010, pp. 1433–1438.

[2] K. Zhang, E. Lucet, J. A. D. Sandretto, S. Kchir, and D. Filliat, “Task
and motion planning methods: applications and limitations,” in 19th
ICINCO 2022. SCITEPRESS-Science and Technology Publications,
2022, pp. 476–483.

[3] B. Kim, L. Shimanuki, L. P. Kaelbling, and T. Lozano-Pérez, “Rep-
resentation, learning, and planning algorithms for geometric task and
motion planning,” The International Journal of Robotics Research,
vol. 41, no. 2, pp. 210–231, 2022.

[4] B. Renault, J. Saraydaryan, and O. Simonin, “Modeling a social
placement cost to extend navigation among movable obstacles (namo)
algorithms,” in 2020 IEEE/RSJ IROS. IEEE, 2020, pp. 11 345–11 351.

[5] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ IROS, vol. 3.
IEEE, pp. 2149–2154.

[6] E. J. Molinos, A. Llamazares, and M. Ocaña, “Dynamic window
based approaches for avoiding obstacles in moving,” Robotics and
Autonomous Systems, vol. 118, pp. 112–130, 2019.

[7] U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy, and D. Manocha,
“Dwa-rl: Dynamically feasible deep reinforcement learning policy for
robot navigation among mobile obstacles,” in 2021 IEEE ICRA. IEEE,
2021, pp. 6057–6063.

[8] K.-H. Zeng, L. Weihs, A. Farhadi, and R. Mottaghi, “Pushing it
out of the way: Interactive visual navigation,” in Proceedings of the
IEEE/CVF CVPR, 2021, pp. 9868–9877.

[9] Z. Meng, H. Sun, K. B. Teo, and M. H. Ang, “Active path clear-
ing navigation through environment reconfiguration in presence of
movable obstacles,” in 2018 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM). IEEE, 2018, pp. 156–163.

[10] M. Wang, R. Luo, A. Ö. Önol, and T. Padir, “Affordance-based mobile
robot navigation among movable obstacles,” in 2020 IEEE/RSJ IROS.
IEEE, 2020, pp. 2734–2740.

[11] K. Ellis, H. Zhang, D. Stoyanov, and D. Kanoulas, “Navigation
among movable obstacles with object localization using photorealistic
simulation,” in 2022 IEEE/RSJ IROS. IEEE, 2022, pp. 1711–1716.

[12] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese,
“Relmogen: Integrating motion generation in reinforcement learning
for mobile manipulation,” in IEEE ICRA, 2021, pp. 4583–4590.

[13] J. Scholz, N. Jindal, M. Levihn, C. L. Isbell, and H. I. Christensen,
“Navigation among movable obstacles with learned dynamic con-
straints,” in IEEE/RSJ IROS, 2016, pp. 3706–3713.

[14] B. Kim and L. Shimanuki, “Learning value functions with relational
state representations for guiding task-and-motion planning,” in CoRL.
PMLR, 2020, pp. 955–968.

[15] A. Thomas and F. Mastrogiovanni, “Minimum displacement motion
planning for movable obstacles,” in Intelligent Autonomous Sys-
tems 17: Proceedings of the 17th International Conference IAS-17.
Springer, 2023, pp. 155–166.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[17] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in ICAPS, vol. 30, 2020, pp. 440–448.

[18] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

APPENDIX

A. System setup

All the experiments are implemented in Python with the
PyTorch deep learning library. We use an NVIDIA GTX1070
GPU with 8G memory and Intel i5-9600F CPU with 16G
memory for all the quantitative results.

B. Parameters of stock region prediction
Name Value

input dim 80×80×3

Conv2d(1)
kernel=5, stride=2, out chan=16,

ReLU, maxpool2D

Conv2d(2)
kernel=3, stride=2, out chan=32,

ReLU, maxpool2D
FC(1) in chan=128, out chan=64, ReLU
FC(2) in chan=64, out chan=4

Total training steps 700,000
Episode length N = 30

Actor learning rate 0.0003
Critic learning rate 0.001

C. Parameters of cost estimation
Name Value

input dim 40×40×3

Conv2d(1)
Kernel=3, stride=2, pad=1, out chan=16,

Batchnorm2d, ReLU, maxpool2D

Conv2d(2)
Kernel=3, stride=2, pad=1, out chan=32,

Batchnorm2d, ReLU, maxpool2D

Conv2d(3)
Kernel=3, stride=1, pad=1, out chan=32,

Batchnorm2d, ReLU, maxpool2D
FC(1) In channel=128, out channel=128, Relu
FC(2) In channel=128, out channel=64, Relu
FC(3) In channel=64, out channel=128, Relu

Learning rate 0.001
Epoch 500

	INTRODUCTION
	RELATED WORK
	Path planning in dynamic environments
	NAMO algorithms
	Stock region searching

	METHOD
	Task description and method overview
	Stock region prediction
	Cost estimation and decision making
	Interaction planning

	EXPERIMENTAL RESULTS
	Pybullet simulation
	Environment description
	Stock region proposal results
	Cost prediction results
	NAMO results

	Gazebo simulation
	Environment description
	Stock region proposal
	Cost prediction
	NAMO results

	CONCLUSION AND FUTURE WORK
	References
	System setup
	Parameters of stock region prediction
	Parameters of cost estimation

