
HAL Id: hal-04316434
https://hal.ip-paris.fr/hal-04316434

Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A review of classical and learning based approaches in
task and motion planning

Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto, Selma Kchir, David
Filliat

To cite this version:
Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto, Selma Kchir, David Filliat. A review of
classical and learning based approaches in task and motion planning. Informatics in Control, Au-
tomation and Robotics, LNCS-836, Springer International Publishing, pp.83-99, 2023, Lecture Notes
in Networks and Systems, �10.1007/978-3-031-48303-5_5�. �hal-04316434�

https://hal.ip-paris.fr/hal-04316434
https://hal.archives-ouvertes.fr


A review of classical and learning based
approaches in task and motion planning

Kai ZHANG1,2[0000−0003−1129−9944], Eric LUCET1[0000−0002−9702−3473], Julien
ALEXANDRE DIT SANDRETTO2[0000−0002−6185−2480], Selma

KCHIR1[0000−0003−3047−6846], and David FILLIAT2,3[0000−0002−5739−1618]

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 U2IS, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France

3 FLOWERS, INRIA, ENSTA Paris, Institut Polytechnique de Paris, 91120
Palaiseau, France
kai.zhang@cea.fr

Abstract. Robots are widely used in many tedious and simple works.
But, with the advance of technology, they are expected to work in more
complex environments and participate in more challenging tasks. Cor-
respondingly, more intelligent and robust algorithms are required. As
a domain having been explored for decades, task and motion planning
(TAMP) methods have been applied in various applications and have
achieved important results, while still being developed, particularly through
the integration of more machine learning approaches. This paper sum-
marizes the development of TAMP, presenting its background, popular
methods, application environment, and limitations. In particularly, it
compares different simulation environments and points out their advan-
tages and disadvantages. Besides, the existing methods are categorized
by their contribution and applications, intending to draw a clear picture
for beginners.

Keywords: Task and motion planning, · simulation environment, · re-
view.

1 Introduction

Robotics has been explored for decades to assist, complement or replace humans.
Since robots never feel tired and make less mistakes in repetitive works, they
have the potential to replace humans in certain jobs. In industrial production,
robots have been widely used for repetitive and well-defined tasks such as assem-
bling cars and moving goods in assembly lines, clearly increasing productivity. To
bring the benefit of robots to daily lives, many works explore the adaptation of
robots from industrial environments to daily living environments. However, un-
like the industrial environment, which is mostly structured and static, the daily
living environment is full of change, which poses new challenges for robot con-
trol algorithms. Besides, robots take on more complex tasks, such as household
chores or delivery tasks. Therefore, more efficient algorithms need to be proposed
to enable robots to understand the environment and behave accordingly.



2 K. ZHANG et al.

To complete a complicated task, also named long-horizon task, a popular
solution is to decompose it into simple subtasks and solve them one by one. This
type of methods can be summarized as two steps, task planning and motion
planning.

From the view of task planning, the complicate tasks could be divided into
several fundamental abstract tasks, like navigation, grasp, push, pull, etc. This
task-decomposing process is independent of the robot types but based on the
definition of abstract short-horizon tasks. For example, the ”open door” task
could be considered as a sequence of abstract actions, like grasping the door
handle, then opening the door. Therefore, the difficulties of task planning are
the definition of abstract actions and the decomposing strategy.

With a subtask, motion planning converts it into executable control parame-
ters for the robots to accomplish the task. For example, in the subtask of grasping
the door handle, by taking the handle position and robot position, the inverse
kinematic method calculates the configuration of each joint of the arm so that
the gripper could reach the handle successfully. Since the robot is not alone in
the environment, calculating a feasible moving trajectory is challenging.

In summary, task planning and motion planning share some similarities but
also can be distinguished by their difference. They play similar roles in the
long-term task-solving part, which means both of them convert the task from
a higher and harder level to a lower and easier level. As for the difference,
task planning plays in the discrete space and is often independent of the robots
while the motion planning lives in either discrete space or continuous space and
varies among robots. For example, the planning of navigation trajectory can be
continuous but planning of start and stop position is discrete.

This paper is an extension of a previous conference paper [59] where we
added several recent advancement on task and motion planning (TAMP) meth-
ods. Besides, a detailed explanation about the comparison criteria of simulation
environments is provided to help with choosing the most suitable one. We also
enriched the challenge section, especially on situational mapping since it is cru-
cial for future TAMP methods to take more context into account.

In a first step, task planning and motion planning are introduced separately
along with explanation of some popular tasks in section 2. Then, the TAMP
methods are introduced and compared in three different categories in section
3. Section 4 describes some public simulation environments and tools used for
TAMP. Before the summary in section 6, the current challenges are detailed
based on current TAMP advances in section 5.

2 Background

2.1 Task planning

Task planning aims to divide a long-horizon task into several short-horizon sub-
tasks, which makes the original difficult task easier to solve. For example, in
a complex washing task [19], given the initial and final states, task planning



A review of classical and learning based approaches in TAMP 3

generates a sequence of intermediate states and corresponding abstract actions
(move, wash, store...). By executing the abstract actions, the robot could transit
from the initial state to the final state.

A more mathematical definition can be expressed as: given as input the initial
state S0 and final state Sg, task planning produces several intermediate states
Si, i = 1, ..., g − 1, where each Si could be achieved from Si−1 through the
transition actions Ai, i = 1, ..., g.

In most cases, the transition actions are abstract and independent of the
robot. A popular description format is the STRIPS-style form, which contains
at least the name, precondition and effect of the action. For example, the action
move from place P1 to place P2 can be described as:

Move(P1,P2)
Pre: (atPos(P1)) (not(atPos(P2)))
Eff: (atPos(P2)) (not(atPos(P1)))

In general, action Ai could be either discrete or continuous. The discrete
action space is made of a finite number of actions, such as turning left and
turning right. In contrast, the continuous action space is infinite and each action
is set by a parameter. For example, turning left 30 degrees is different from
turning left 30.1 degrees. Comparing to discrete action space, it takes more time
to find the action sequence in a continuous action space.

To solve the task planning problem, several planning methods have been
proposed, such as behavior tree methods [19], heuristic search methods [10],
operator planning methods, etc. A more detailed overview and discussion can
be found in the introduction book [31]. Thanks to their simplicity and efficiency,
they are widely used in the decision making games like chess, Tower of Hanoi,
etc.

Instead of a hand-crafted approach, reinforcement learning (RL) methods
learn strategies to map observations from the current situation to the next sub-
goals by maximizing rewards. Popular RL methods include DQN [38] for discrete
actions and DDPG [35] or Soft Actor-Critic(SAC) [16] for continuous actions.
By default, these methods learn the solution of a single task, hence they couldn’t
be used as a general task planner. But in planning problems, the RL approach
can be applied to learn goal-conditioned policies, which takes in the observation
and goal information and outputs appropriate next subgoals as actions. For ex-
ample, to solve a 2D navigation task, [6] uses a goal-conditioned RL to generate
a sequence of intermediate waypoints that the robot could follow to reach the
goal. Such policies can also be trained using imitation learning, and their gen-
eralization to large problems is considered in [51]. They propose Action Schema
Networks to solve probabilistic and classical planning problems by mimicking
the policy generated by traditional planners.

2.2 Motion planning

Motion planning can be thought of as a bridge between low-level control param-
eters and high-level tasks. Given a goal position corresponding to a high-level



4 K. ZHANG et al.

task, the motion planning algorithm generates a trajectory or a number of con-
trol parameters, such as the robot’s angular and linear speed, to guide it to its
destination in the navigation subtask.

For motion planning, a number of algorithms have been developed, such as
inverse-kinematic approaches for manipulation tasks or shortest path planning
methods for navigation tasks. Ghallab’s planning book [15] provides a more
thorough introduction and overview of the existing techniques.

In addition to the classical approaches, learning techniques are also employed.
For example, [61] proposes a reinforcement learning technique for visually guided
navigation in enclosed spaces. The motion parameters are generated by a network
to govern the movement of the robots based on the visual observations. More
approaches based on reinforcement learning can be found in [48].

The cost function to be optimized is another dimension of the motion plan-
ning systems. Different from most approaches that have a single objective such
as the distance to obstacles, motion planners can also develop plans based on
the specific context of the local environment. For instance, a context-aware
costmap [36] can be created by combining numerous semantic layers, each of
which defines a different sort of constraint, resulting from mobile or static obsta-
cles and from areas with specific danger or expected behavior. Then, a practical
and secure trajectory could be produced by planning using the context-aware
costmap. For instance, a proactive obstacle avoidance technique is presented in
[42], where the robot tends to steer clear of people from their back area. Other
examples could include situation where the robot must go on the correct side of
the road or, when faced with stairs, it should choose the wheelchair accessible
ramp.

2.3 Task and motion planning objectives

Although there are many complex global objectives for TAMP in the human
environment, the majority of them can be viewed as a mixture of more simple
prototypical tasks. We think that if the TAMP approaches could successfully
handle these fundamental problems at scale, they could be easily applied to
address more challenging tasks. We present three of these fundamental tasks
below:

– Rearrangement (Re). Figure 1(a) illustrates how the robot must maneuver
a number of obstacles in order to avoid colliding with these obstacles while
reaching for the desired target object. Collaboration can be necessary for the
rearrangement task for numerous robots, which commonly happens when a
robot’s arm is physically unable to access certain areas of the environment [4].
In rearrangement tasks, we typically concentrate on planning arm actions.

– Navigation among movable obstacles (NAMO). Compared to pure naviga-
tion tasks, a robot might interact with the surroundings while navigating to
the desired point. For instance, it can actively remove movable obstacles in
order to make a blocked trajectory feasible. Figure 1(b) provides an illus-
tration where the robot should clear the obstructions in the hallway before



A review of classical and learning based approaches in TAMP 5

Fig. 1. Demonstration of tasks (Figure is from [59]): (a) Rearrangement task. The
robot needs to move the green box from its start pose to the goal region indicated
by the green circle [25]. (b) Navigation among movable obstacles. The robot needs to
remove the green obstacles before pushing the red boxes to the kitchen region [24].
(c) Pick-Place-Move task. The robot should pick the blue cube and place it in the
bottom left container [9].

entering the kitchen. Compared to rearrangement, we typically intertwine
arm and mobile base actions.

– Pick-Place-Move (PPM) task. The robot’s basic actions are to pick up an
object, move it, and put it in a container, as seen in Figure 1(c). The PPM
can also be used for assembly and/or disassembly job, which should take the
order of the manipulated objects into account. Here again, plans typically
intertwine arm and mobile base actions.

In all these three fundamental tasks, task planning usually entails choosing
which object to grasp or manipulate, and where to put it, while motion planning
will generate arms and mobile base motions to execute these decisions.

3 Task and motion planning methods

After introducing task planning and motion planning separately, we now focus
on methods that perform both simultaneously. This is challenging because these
two modules should be designed carefully to guarantee the effectiveness of the
system. For example, the task planner should generate feasible plans for the
motion planner and adjust the next output according to the results of motion
planner. The connection between these two planners contributes to the intelligent
behaviours of the robot.

We describe the main TAMP methods into three categories, namely classi-
cal methods that are historically developed first using various algorithmic ap-
proaches, learning methods that try to tackle the task using purely data based
algorithms and hybrid methods that combine the previous two techniques in
various ways.



6 K. ZHANG et al.

3.1 Classical methods

The classical methods are mainly divided into two categories, sampling-based
and optimization-based methods. Some examples can be found in Figure 2. The
widely-used sampling-based methods usually include symbolic operators, which
specify the prerequisites of applying an action and its effect. A comprehensive
review on sampling methods and optimization methods to solve TAMP problems
can be found in [8].

Fig. 2. TAMP applications of using classical methods. The left figure is from [52] where
robot navigates based on sampling methods. The right figure is from [50] where robot
builds the highest tower based on optimization methods.

Given a long-horizon task with description of initial and final state, sampling-
based methods randomly sample states from the continuous state space in or-
der to find valuable intermediate states, like key frames of a video. Afterward,
searching approaches are used to identify a series of workable transition operators
between the sampled intermediate states, and the sampler can produce new sam-
ples if an existing one doesn’t result in a feasible plan. The frequently adopted
searching methods include heuristic search [52], forward search [19], or backward
search (a more complete overview on searching methods can be found in [15]).
From the resulting sequence of intermediate states and operation between them,
classical motion planning methods, such as A* [17], RRT Connect [29] for the
robot base or inverse kinematics for the robot arm [13,47], are applied to control
the robot to follow the plan.

However, sampling-based methods do not perform well on some particular
problems. First, they cannot generally identify infeasible problem instances and
will therefore not terminate in such cases. Second, the sampling procedure can



A review of classical and learning based approaches in TAMP 7

only be used on the space that has already been investigated, therefore they
are unable to provide solutions for problems that require identifying values from
unknown space [11]. For example, in a partial observation case, the robot can
only plan a path to a waypoint within the range of observation. Finally, sam-
pling techniques often fail when the task description is not specific enough. For
example, in a pouring task, if we ask the robot to pour as much milk as possible
into the cup without indicating the amount to reach, the sampling planner will
fail since it cannot find an ultimate state.

Optimization based approaches present characteristics that solve these short-
comings of the sampling methods. Different from terminating on a specific state,
the objective is represented as a cost function along the temporal axis. Then,
an optimization strategy is utilized to minimize the cost with respect to con-
straints and finally outputs a workable solution. Benefiting from the integrated
time axis in the objective function, the optimization method is appropriate to
solve the problems in continuous action space. For example, in a manipulation
problem where a robot should assemble cylinders and plates on a table to build
the highest possible stable tower [50], the action sequences are generated by a
straightforward symbolic planning approach but the optimal final and interme-
diate placements of each component are discovered through optimization.

In addition, there are also some TAMP methods based on specific hand-
crafted strategy. For example, [37] presents an active path cleaning algorithm for
the NAMO task, which integrates obstacle classification, collision detection, local
environment reconstruction and interaction with obstacles. To solve the situation
where the obstacle is unknown, an affordance-based method [52] is developed to
help the robot identify if the obstacle is movable through interaction.

3.2 Learning based methods

In learning based methods, robot acquires skills from numerous trials including
success and failure cases, instead of relying on a manually designed model as-
sociated to sampling or optimization. As one of the most popular frameworks,
RL learns to produce the plans sequentially through a policy mapping the cur-
rent observation of the environment to an action [4]. To solve a TAMP problem,
a reward function is defined, usually giving a positive reward when the robot
finishes the task, and a negative reward when it fails. Then, the learning mecha-
nism behind RL finds the policy that maximizes the sum of rewards. One of the
important difficulty of RL for long TAMP problems is to explore efficiently the
environment, as taking random actions requires a prohibitive number of trials
until a solution can be found [34]. Therefore, hierarchical RL (HRL) has been
proposed to solve this sparse reward problem by decomposing the complicated
tasks into simpler subtasks so that the robot could get positive reward easily
and accomplish the difficult tasks step by step [1]. Some examples can be found
in Figure 3.

An intuitive idea of HRL is to design and train two networks, one for high
level task generation and another one for primitive motion control. In [18], learn-
ing sensorimotor primitives is accomplished by training a low-level network with



8 K. ZHANG et al.

Fig. 3. TAMP applications of using learning-based methods. The left figure is from
[18] where the humanoid robot passes a virtual gate. Two policies including subgoal
generation and balance control are optimized separately. The right figure is from [34]
where robot navigates to blue goal point. The subgoal generation and motion control
modules are optimized jointly.

access to proprioceptive sensors on simple tasks. Then, this pre-trained module
is fixed and connected to a high-level network, with access to all sensors, which
drives behavior by modulating the inputs to the low-level network. Similarly,
in [30], a high-level module learns the strategy of generating subgoals and a
low-level module learns the actions to complete each subgoal. Due to the limi-
tations of previous approaches in generalization capabilities, a task-independent
approach is designed by reformulating the task description [40]: absolute obser-
vations are replaced with relative observations, such as position and distance
to reduce the dependence on the task environment. Additionally, they use an
off-policy RL technique, which requires less interactive training data, to simplify
training in a real-world setting.

Training high-level strategies and low-level actions separately would lose the
opportunity for joint optimization, leading to the possible failure of converging
at the optimal strategy. Therefore, in [32], the authors describe a joint training
strategy that learns the policy in three levels for a navigation task. The top level
generates subtasks by the current state and the goal state, while the middle
level decomposes the subtasks into directly feasible goals and the lowest level
generates action control parameters to reach the goal. By maximizing the success
rate, the three levels are optimized jointly. However, in a NAMO task, given a
final location, the higher-level subgoal creation network must generate goals not
only for the robot base but also for the arm to interact with. Therefore, a HRL
method is proposed in [34] to generate heterogeneous subgoals for the robot to
interact with obstacles during navigation. To find appropriate interactions with
various obstacles, a neural interaction engine [58] that predicts the effects of



A review of classical and learning based approaches in TAMP 9

actions is integrated into a policy-generating RL network. With this network,
the actions with the greatest success rate are picked by comparing the effects of
different actions on the success rate of completing the task in the future.

Although these learning methods achieve satisfactory results in simulated
environments, transferring from simulated environments to real applications is
difficult because the trained models usually cannot be used directly in real sce-
narios. In most cases, they need to be retrained in the application environment.
For example, in the solution proposed in [34], the trained models map sensor
data to actions. When migrating this model to the real environment, the map-
ping between sensor data and actions needs to be re-established due to the huge
differences between the virtual and real environments. In addition, real sensor
data is noisy. Even at the same observation location and observation environ-
ment, the sensor data observed twice may be different, and this variation may
lead to erroneous actions of the model. It is also important to note that training
data in real environments is expensive and the effectiveness of learning-based
methods is affected by the required size of the training dataset. Therefore there
are very few real world applications that rely only on learning methods.

3.3 Hybrid methods

Although both classical and learning-based methods can solve some TAMP
tasks, they both have limitations. For example, the symbolic operators used in
sampling-based methods are usually designed manually, which requires expertise
and is time-consuming. In addition, the sampling approach is inefficient because
of environmental constraints, where only a small fraction of a huge space may
meet the requirements, but random sampling requires verification of thousands
of sample points to find a suitable location. Learning methods avoid manual op-
erations, but they provide less freedom to add additional constraints such as no
collision tolerance. The obtained models have poor migration capabilities due to
the mappings from observations to behaviors are closely related to the experi-
mental environment. Moreover, the transfer of learning methods from simulated
to real environments proves to be difficult due to the high cost of constructing
training datasets and the unrealistic representation of the environment, which
can be caused by sensor noise, varying illumination conditions, noisy action ex-
ecution, etc.

Therefore, some researchers adopt the hybrid strategy, using a classical TAMP
solver structure that include some learning components. This includes learning
to generate symbolic operators from dataset [46,41,28], learning to guide the
operator search [24,22], and learning to generate feasible subgoals [55]. Some
instances can be found in Figure 4.

Learn to generate symbolic operators Learning symbolic operators from
a dataset provides the basic elements, i.e., primitive actions, for the task plan-
ning. With the learned operators, a conventional tool such as PDDL [14] or its



10 K. ZHANG et al.

Fig. 4. TAMP applications of using hybrid methods. Figure (a) is from [46] where the
symbolic operators are learned from a dataset before applying TAMP methods. (b) is
from [24] where the RL is leveraged to order the priority of the manipulated objects.
(c)[55] integrates the RL method for subgoal generation with classical motion control
algorithms to solve a NAMO task.

extensions [57,12] is applied to search feasible plans, which consists of primi-
tive actions. Then, a motion planning algorithm is used to directly convert the
primitive actions into executable control parameters.

A supervised learning strategy is introduced in [41] to learn symbolic opera-
tors from a training dataset. Each training instance contains the current state,
an action, and the effect after applying the action. The action model is searched
by maximizing the likelihood of the action effect, but taking into account a
complexity penalty. To reduce the requirement of expensive training datasets,
a learning-from-experience approach [28] first applies the action to the agent
and records state through experience. Then, it converts continuous states into
decision trees and finally into symbolic operators. Similarly, in [46], the original
dataset is created from demonstrations and the abstract symbolic operators are
generated by statistical clustering methods and used for further task planning.

Learn to search In a problem containing a large number of actions and states,
classical search methods are less efficient because the search space is too large.
Reinforcement learning methods provide a way to learn the search strategy from
experience thus avoiding traversing the entire space to find a solution [2]. In
[24], a graph is used as a representation of the search space due to its scalabil-
ity. Nodes are abstract actions, while edges are transition priorities. A Q-value
function is learned from the training dataset using a neural network to rank the
abstract actions and calculate the priorities to guide efficient search. In addition
to searching in the discrete space, a generative model provides multiple feasible
candidates in the continuous action space to avoid being blocked by an infeasible
solution [23]. Similarly, a model is applied to the dataset to learn the probability
of success [53,54]. Then, in the same domain but new scenario, it predicts the
success rate of each action. By selecting the actions with higher success rates, the
search space is greatly reduced. In addition, the success rate is also used to plan



A review of classical and learning based approaches in TAMP 11

subtasks. In [60], a model is trained to generate a success rate map with respect
to navigation subgoals. A threshold is then set to constrain the search space of
subgoals in the environment, thus speeding up the task planning process.

Learn to decompose In addition to operator-based methods, some direct sub-
task generation methods based on reinforcement learning have been proposed.
These methods propose directly feasible subtasks for which classical motion plan-
ning methods are employed in order to control the robot. In a NAMO task, [55]
use the SAC algorithm [16] to generate subtasks for the robot’s arm and base.
The algorithm use a distance reduction reward and success reward to train the
network to generate subtasks, in conjunction with traditional motion planning
methods such as RRT connect [29] and inverse kinematic methods to verify the
feasibility of subtasks.

In summary, hybrid approaches typically apply a learning-based approach
to task planning, or part of the task planning process, and then employ classi-
cal motion planning algorithms to generate control parameters. The use of the
classical motion planning in these strategies offers better transferability to the
real world than pure learning algorithms, while the learning-based part provides
more efficient solutions than classical task planning methods.

Finally, Table 1 provides an overview of the application of the presented
classical, learning based and hybrid methods on the fundamental tasks proposed
in section 2.3.

Table 1. Applications of TAMP methods on the three fundamental tasks. Re: Rear-
rangement, NAMO: Navigation Among Movable Obstacle, PPM: Pick Place Move.

Classical methods Learning based methods Hybrid methods

Re [47,50,13] [4] [2,53,54]

NAMO [37,52] [34,39,58] [22,21,55]

PPM [19,20,9] [24,28,11,60]

4 Benchmarks and tools

The validation of algorithm performance is an important but difficult step when
developing robotics algorithms. Testing directly the effects of the approaches
in a real environment is a straightforward approach, but it is extremely time-
consuming, expensive, unstable, and potentially unsafe. Therefore, it is common
to first validate in a virtual environment and then migrate to real conditions if
expectations are met. To facilitate experimental validation, a number of inter-
active simulation environments have been proposed for a wide variety of tasks.

In this section, we compare several simulation environments that are designed
for navigation and manipulation tasks, which include iGibson2 [33], AI2THOR



12 K. ZHANG et al.

[27], TDW [7], Sapien [56], Habitat2 [49] and VirtualHome [43]. The generic sim-
ulators like Gazebo[26], Bullet[3], are not considered since they are not designed
for task and motion planning but for more general usage. Instead of focusing on
the low-level view of which type of rendering they use, we focus on their usabil-
ity for TAMP tasks and their extensibility to real environments. We describe
below our selected comparison criteria and the results of our evaluation for each
environment is presented in Table 2.

Table 2. Comparison among different interactive simulation environments. Table is
from [59].

iGibson2 AI2THOR TDW Sapien Habitat2 VirtualHome

Provided environment
15 homes
(108
rooms)

120 rooms - - -
build from 8
rooms

Interactive objects 1217 609 200 2346 - 308

ROS support ✓ × × ✓ ✓ ×
Uncertainty support ✓ × × × ✓ ×

Supported tasks
Re + +++++ ++++ ++++ ++++ ++++

NAMO +++++ ++ +++ +++ ++ ++++
PPM +++++ +++++ ++++ ++++ +++++ +++++

Speed
++
(GPU)

++ ++ +++ ++++ ++

Sensors
RGBD,
Lidar

RGBD RGBD RGBD RGBD RGBD

– Provided environment and interactive objects. A simulation environ-
ment with embedded scenes and interactive objects is easier to use since
constructing the scenes is difficult for a beginner. A large number of inter-
active objects provide the users more freedom to adapt the environment to
the tasks.

– ROS support. Robot Operating System (ROS) [44] is a generic and widely-
used framework for building robot applications. It offers a standard software
platform to developers across industries that will carry them from research
and prototyping all the way through to deployment and production. With
ROS support, we could easily transfer our algorithm from simulation envi-
ronment to real applications. Hence, an environment supporting ROS has
better transferability.

– Uncertainty support. In the real environment, the sensor data always
contains noise and uncertainty. Introducing uncertainty in simulation envi-
ronment provides more realistic results for the algorithms.

– Support tasks. Here we evaluate the usability of each environment to the
three fundamental tasks described in 2.3. The score is given based on the



A review of classical and learning based approaches in TAMP 13

provided environment, types of interaction, control interfaces, etc. A higher
score means that it is easier to apply the environment to the task.

– Speed. Rendering speed is important in simulation experiments. All the
environments can use only CPU for rendering except the iGibson2.

– Sensors. We list which type of sensors the simulation environment supports
(RGBD: Color and depth camera).

5 Challenges

Although TAMP methods have been explored for decades, they still lack robust-
ness and generalization capabilities and face limitations in practical applications.
In this section, we present several potential areas for improvement.

5.1 Observation uncertainty

Uncertainty in observations is usually caused by sensor noise, which is unavoid-
able in practical applications. While this is a very general concern, there are
two solutions that target specifically this problem by (a) modeling the noise
and reducing it by multiple observations [20], and (b) using learning methods to
map the noisy data directly to actions [4]. An operator-based TAMP approach
is proposed in [20] to address the observation uncertainty in the PPM task. This
uncertainty arises in the localization of the robot and the target object. They
eliminate the noise by modeling the noise of localization using a Gaussian model
after multiple observations of the object from the robot. A noteworthy point is
that they model the relative difference between the two objects rather than fo-
cusing on a single object because it may have systematic errors. In [4], raw sensor
data is fed directly to a neural network, aiming to map raw observations into
action sequences through reward optimization. This approach is simple because
it does not require a complex modeling process, but a large number of train-
ing scenarios, 30,000 in their experiments, is required for the neural network to
withstand the effects of random errors on the observations.

In summary, although these approaches are effective in reducing the effect
of observation errors on actions, the corresponding experimental setting remain
quite simple and the robot has a large free space to operate. Therefore, this
raises the question of whether the method is practical in limited and complex
environments where robots need to perform household tasks. Making multiple
observations from multiple angles in a small environment is not easily achiev-
able and the learning-based methods are too inefficient. There are therefore still
many challenges in the integration of uncertainty reduction actions in the TAMP
problems.

5.2 Action uncertainty

Using a symbolic operator, an action may produce different action effects given
the same preconditions and actions. For example, the pick action may be per-
formed by grabbing from the top of an object or from its side. This ambiguity



14 K. ZHANG et al.

may lead to failure when trying to place the object steadily. In a PPM task
described in [46], the robot needs to pick an object and place it on a shelf. Due
to the limited space under the ceiling of the shelf, the robot needs to choose
an appropriate pick action. They collected a dataset from which several picking
actions were obtained, such as picking from the side and picking from the top.
By backtracking the target state, a solution is found so that the robot could
choose actions based on the target state.

Such backtracking method can certainly solve the uncertainty of the action,
but it requires sufficient observation of the environment, which is usually not
satisfied in practical applications. Another option is to replan based on observa-
tions. For example, initially the robot grasps an object from the top and observes
that the current grasping setup is not appropriate for placing. It can replan and
change the grasping configuration by temporarily putting the object on a table
and then placing the object on the shelf. Nevertheless, replanning is usually a
costly operation, and integrating efficient replanning strategies in TAMP is an
interesting research direction.

5.3 Context-aware decision making

Real tasks are often more complex than the tasks artificially designed for re-
search, and the robot needs to derive solutions by considering the relevant
situational information for each task. For example, imagine a block building
task where various shapes of blocks are provided and the goal is to assemble
a car model. Solving the task is not possible without considering the shape of
each block and of the car. Contextual analysis and mapping should therefore be
adapted to as many tasks as possible and can benefit a variety of domains, in-
cluding safe navigation, action verification, and understanding ambiguous tasks.

To enable safe navigation, situational mapping allows robots to create their
own danger zones based on the type of obstacles. For example, for stationary
obstacles, such as walls and tables, the danger zones are relatively small, while
for mobile obstacles, such as humans and vehicles, the danger zones are larger.
Specifically, the shape of the danger zone can be related to the direction and
speed of movement of the mobile obstacle. As an example, in [45], the real-
time human behavior is analyzed to generate danger zones for safe navigation
in crowded scenes.

Due to the noise of sensors and action uncertainty, a robot might apply an
action to an object but fail to change its state. For example, it can fail to grasp
a bottle even after the grasp action. If there is no action verification step, all the
following actions are vain. Utilizing the semantic information as a validation,
like detecting whether there is still a bottle at the grasping point, is important
to help the robot correct such mistakes in time.

Sometimes, the description of a task allocated to a robot is ambiguous. For
example, in PPM task, instead of asking the robot to pick an object at location
A and put it at location B, the task could be described as picking an object
in the living room and putting it in the kitchen. Without the precise location
instruction, the robot should recognize and understand the environment, like



A review of classical and learning based approaches in TAMP 15

judging whether the current room is the kitchen. Many research on semantic en-
vironment modelling and navigation can be exploited, such as the work proposed
in [5] where the robot navigates with consideration of semantic information of
environment and chooses suitable route to destination.

In summary, TAMP has a long way to go to provide the capability to solve
diverse kind of tasks in a unified approach, and a complete and coherent envi-
ronment and context modelling is a key element in this direction.

5.4 Balance between optimum and feasibility

This last challenge is on the definition of the TAMP final objective, which can
be either to find an optimal solution or limited to finding a feasible solution. For
example, in NAMO task, it might happen that the robot can either bypass an
obstacle through moving a longer distance or clear the obstacle and pass it, which
may correspond (depending on the particular situation) to a feasible solution
and to the optimal solution respectively. The choice between these two solutions
is of higher level than the TAMP task, and could be made by considering the
semantic background, such as whether the task is urgent or whether one wants to
secure its completion by avoiding more uncertain actions (such as manipulation).
But it is therefore interesting to develop TAMP approaches that can provide
sets of solutions with different characteristics, such as different optimality/risk
tradeoffs.

6 Conclusion

This paper, as an extension of [59], reviews recent advances in TAMP, including
tasks, useful simulation environments, approaches and existing challenges. Three
fundamental tasks, namely rearrangement, navigation among movable obstacles
and pick-place-move task, are detailed. To facilitate the experiments, this paper
also illustrates some simulation environments so the readers may readily select
the appropriate experiment environment based on their needs. Besides, certain
TAMP approaches are categorized into three groups based on whether they
employ machine learning methodologies. Furthermore, their experiment tasks
are also listed, which helps readers to easily choose a baseline according to their
objectives and prior knowledge. Finally, we highlight the current difficulties with
the goal of identifying potential investigation directions, in particular the need
of algorithms that are more resilient to perception and action uncertainty and
that can leverage environment semantics.

ACKNOWLEDGEMENTS

This work was carried out in the scope of OTPaaS project. This project has
received funding from the French government as part of the “Cloud Acceleration
Strategy” call for manifestation of interest.



16 K. ZHANG et al.

References

1. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-
ing. Discrete event dynamic systems 13(1), 41–77 (2003)

2. Chitnis, R., Hadfield-Menell, D., Gupta, A., Srivastava, S., Groshev, E., Lin, C.,
Abbeel, P.: Guided search for task and motion plans using learned heuristics. In:
2016 IEEE International Conference on Robotics and Automation (ICRA). pp.
447–454. IEEE (2016)

3. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org (2016–2021)

4. Driess, D., Ha, J.S., Toussaint, M.: Deep visual reasoning: Learning to predict
action sequences for task and motion planning from an initial scene image. In:
Robotics: Science and Systems 2020 (RSS 2020). RSS Foundation (2020)

5. Drouilly, R., Rives, P., Morisset, B.: Semantic representation for navigation in
large-scale environments. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). pp. 1106–1111. IEEE (2015)

6. Eysenbach, B., Salakhutdinov, R.R., Levine, S.: Search on the replay buffer: Bridg-
ing planning and reinforcement learning. Advances in Neural Information Process-
ing Systems 32 (2019)

7. Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., De Freitas,
J., Kubilius, J., Bhandwaldar, A., Haber, N., et al.: Threedworld: A platform for
interactive multi-modal physical simulation. In: Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

8. Garrett, C.R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L.P.,
Lozano-Pérez, T.: Integrated task and motion planning. Annual review of control,
robotics, and autonomous systems 4, 265–293 (2021)

9. Garrett, C.R., Lozano-Pérez, T., Kaelbling, L.P.: Ffrob: An efficient heuristic for
task and motion planning. In: Algorithmic Foundations of Robotics XI, pp. 179–
195. Springer (2015)

10. Garrett, C.R., Lozano-Perez, T., Kaelbling, L.P.: Ffrob: Leveraging symbolic plan-
ning for efficient task and motion planning. The International Journal of Robotics
Research 37(1), 104–136 (2018)

11. Garrett, C.R., Lozano-Pérez, T., Kaelbling, L.P.: Sampling-based methods for fac-
tored task and motion planning. The International Journal of Robotics Research
37(13-14), 1796–1825 (2018)

12. Garrett, C.R., Lozano-Pérez, T., Kaelbling, L.P.: Pddlstream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive planning. In: Proceedings
of the International Conference on Automated Planning and Scheduling. vol. 30,
pp. 440–448 (2020)

13. Garrett, C.R., Paxton, C., Lozano-Pérez, T., Kaelbling, L.P., Fox, D.: Online re-
planning in belief space for partially observable task and motion problems. In:
2020 IEEE International Conference on Robotics and Automation (ICRA). pp.
5678–5684. IEEE (2020)

14. Ghallab, M., Howe, A., Knoblock, C., Mcdermott, D., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL—The Planning Domain Definition Language (1998), http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212

15. Ghallab, M., Nau, D., Traverso, P.: Automated planning and acting. Cambridge
University Press (2016)

16. Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V.,
Zhu, H., Gupta, A., Abbeel, P., et al.: Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905 (2018)

http://pybullet.org
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212


A review of classical and learning based approaches in TAMP 17

17. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2), 100–107 (1968)

18. Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M., Silver, D.: Learning
and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182
(2016)

19. Kaelbling, L., Lozano-Perez, T.: Hierarchical task and motion planning in the now.
In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion, ICRA (2010)

20. Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning in belief
space. The International Journal of Robotics Research 32(9-10), 1194–1227 (2013)

21. Kim, B., Kaelbling, L.P., Lozano-Pérez, T.: Adversarial actor-critic method for
task and motion planning problems using planning experience. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 33, pp. 8017–8024 (2019)

22. Kim, B., Shimanuki, L.: Learning value functions with relational state represen-
tations for guiding task-and-motion planning. In: Conference on Robot Learning.
pp. 955–968. PMLR (2020)

23. Kim, B., Shimanuki, L., Kaelbling, L.P., Lozano-Pérez, T.: Representation, learn-
ing, and planning algorithms for geometric task and motion planning. The Inter-
national Journal of Robotics Research 41(2), 210–231 (2022)

24. Kim, B., Wang, Z., Kaelbling, L.P., Lozano-Pérez, T.: Learning to guide task and
motion planning using score-space representation. The International Journal of
Robotics Research 38(7), 793–812 (2019)

25. King, J.E., Cognetti, M., Srinivasa, S.S.: Rearrangement planning using object-
centric and robot-centric action spaces. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA). pp. 3940–3947. IEEE (2016)

26. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). vol. 3, pp. 2149–2154.
IEEE

27. Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon,
D., Zhu, Y., Gupta, A., Farhadi, A.: Ai2-thor: An interactive 3d environment for
visual ai. arXiv preprint arXiv:1712.05474 (2017)

28. Konidaris, G., Kaelbling, L.P., Lozano-Perez, T.: From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning. Journal of Artificial
Intelligence Research 61, 215–289 (2018)

29. Kuffner, J.J., LaValle, S.M.: Rrt-connect: An efficient approach to single-query
path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065). vol. 2, pp. 995–1001. IEEE (2000)

30. Kulkarni, T.D., Narasimhan, K., Saeedi, A., Tenenbaum, J.: Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems 29 (2016)

31. LaValle, S.M.: Planning algorithms. Cambridge university press (2006)
32. Levy, A., Konidaris, G., Platt, R., Saenko, K.: Learning multi-level hierarchies with

hindsight. In: International Conference on Learning Representations (2018)
33. Li, C., Xia, F., Mart́ın-Mart́ın, R., Lingelbach, M., Srivastava, S., Shen, B., Vainio,

K.E., Gokmen, C., Dharan, G., Jain, T., et al.: igibson 2.0: Object-centric simula-
tion for robot learning of everyday household tasks. In: 5th Annual Conference on
Robot Learning (2021)



18 K. ZHANG et al.

34. Li, C., Xia, F., Martin-Martin, R., Savarese, S.: Hrl4in: Hierarchical reinforcement
learning for interactive navigation with mobile manipulators. In: Conference on
Robot Learning. pp. 603–616. PMLR (2020)

35. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., Wierstra, D.: Continuous control with deep reinforcement learning. In: ICLR
(Poster) (2016)

36. Lu, D.V., Hershberger, D., Smart, W.D.: Layered costmaps for context-sensitive
navigation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. pp. 709–715. IEEE (2014)

37. Meng, Z., Sun, H., Teo, K.B., Ang, M.H.: Active path clearing navigation
through environment reconfiguration in presence of movable obstacles. In: 2018
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM). pp. 156–163. IEEE (2018)

38. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

39. Nachum, O., Gu, S., Lee, H., Levine, S.: Near-optimal representation learning
for hierarchical reinforcement learning. In: International Conference on Learning
Representations (2018)

40. Nachum, O., Gu, S.S., Lee, H., Levine, S.: Data-efficient hierarchical reinforcement
learning. Advances in neural information processing systems 31 (2018)

41. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.P.: Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence Research 29, 309–352 (2007)

42. Patel, U., Kumar, N.K.S., Sathyamoorthy, A.J., Manocha, D.: Dwa-rl: Dynami-
cally feasible deep reinforcement learning policy for robot navigation among mobile
obstacles. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). pp. 6057–6063. IEEE (2021)

43. Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., Torralba, A.: Virtual-
home: Simulating household activities via programs. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 8494–8502 (2018)

44. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y., et al.: Ros: an open-source robot operating system. In: ICRA workshop
on open source software. vol. 3, p. 5. Kobe, Japan (2009)

45. Samsani, S.S., Muhammad, M.S.: Socially compliant robot navigation in crowded
environment by human behavior resemblance using deep reinforcement learning.
IEEE Robotics and Automation Letters 6(3), 5223–5230 (2021)

46. Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L.P., Lozano-Pérez, T.: Learning
symbolic operators for task and motion planning. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 3182–3189. IEEE (2021)

47. Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined
task and motion planning through an extensible planner-independent interface
layer. In: 2014 IEEE international conference on robotics and automation (ICRA).
pp. 639–646. IEEE (2014)

48. Sun, H., Zhang, W., Yu, R., Zhang, Y.: Motion planning for mobile
robots—focusing on deep reinforcement learning: A systematic review. IEEE Ac-
cess 9, 69061–69081 (2021)

49. Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre,
N., Mukadam, M., Chaplot, D., Maksymets, O., Gokaslan, A., Vondrus, V., Dharur,
S., Meier, F., Galuba, W., Chang, A., Kira, Z., Koltun, V., Malik, J., Savva, M.,
Batra, D.: Habitat 2.0: Training home assistants to rearrange their habitat. In:
Advances in Neural Information Processing Systems (NeurIPS) (2021)



A review of classical and learning based approaches in TAMP 19

50. Toussaint, M.: Logic-geometric programming: An optimization-based approach to
combined task and motion planning. In: Twenty-Fourth International Joint Con-
ference on Artificial Intelligence (2015)

51. Toyer, S., Thiébaux, S., Trevizan, F., Xie, L.: Asnets: Deep learning for generalised
planning. Journal of Artificial Intelligence Research 68, 1–68 (2020)

52. Wang, M., Luo, R., Önol, A.Ö., Padir, T.: Affordance-based mobile robot navi-
gation among movable obstacles. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 2734–2740. IEEE (2020)

53. Wang, Z., Garrett, C.R., Kaelbling, L.P., Lozano-Pérez, T.: Active model learning
and diverse action sampling for task and motion planning. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 4107–
4114. IEEE (2018)

54. Wang, Z., Garrett, C.R., Kaelbling, L.P., Lozano-Pérez, T.: Learning compositional
models of robot skills for task and motion planning. The International Journal of
Robotics Research 40(6-7), 866–894 (2021)

55. Xia, F., Li, C., Mart́ın-Mart́ın, R., Litany, O., Toshev, A., Savarese, S.: Relmogen:
Integrating motion generation in reinforcement learning for mobile manipulation.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA). pp.
4583–4590. IEEE (2021)

56. Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M., Jiang, H., Yuan,
Y., Wang, H., et al.: Sapien: A simulated part-based interactive environment. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 11097–11107 (2020)

57. Younes, H.L., Littman, M.L.: Ppddl1. 0: An extension to pddl for expressing plan-
ning domains with probabilistic effects. Techn. Rep. CMU-CS-04-162 2, 99 (2004)

58. Zeng, K.H., Weihs, L., Farhadi, A., Mottaghi, R.: Pushing it out of the way: Interac-
tive visual navigation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 9868–9877 (2021)

59. Zhang, K., Lucet, E., Sandretto, J.A.D., Kchir, S., Filliat, D.: Task and motion
planning methods: applications and limitations. In: 19th International Conference
on Informatics in Control, Automation and Robotics ICINCO 2022). pp. 476–483.
SCITEPRESS-Science and Technology Publications (2022)

60. Zhang, X., Zhu, Y., Ding, Y., Zhu, Y., Stone, P., Zhang, S.: Visually grounded task
and motion planning for mobile manipulation. arXiv preprint arXiv:2202.10667
(2022)

61. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.:
Target-driven visual navigation in indoor scenes using deep reinforcement learning.
In: 2017 IEEE international conference on robotics and automation (ICRA). pp.
3357–3364. IEEE (2017)


	A review of classical and learning based approaches in task and motion planning

