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mean field Langevin dynamics*†
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Abstract

We study the kinetic mean field Langevin dynamics under the functional convexity
assumption of the mean field energy functional. Using hypocoercivity, we first es-
tablish the exponential convergence of the mean field dynamics and then show the
corresponding N -particle system converges exponentially in a rate uniform in N

modulo a small error. Finally we study the short-time regularization effects of the
dynamics and prove its uniform-in-time propagation of chaos property in both the
Wasserstein and entropic sense. Our results can be applied to the training of two-layer
neural networks with momentum and we include the numerical experiments.
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1 Introduction

Training neural networks by momentum gradient descent has proven to be effective
in various applications [38, 22, 35]. However, despite their excellent performance, the
theoretical understanding of those algorithms remains elusive. Recently, extensive
researches have been conducted to model the loss minimization of neural networks as
a mean field optimization problem [28, 8, 34, 18], with most characterizing gradient
descent algorithms as overdamped mean field Langevin (MFL) dynamics. In this paper,
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Uniform propagation of chaos for kinetic MFL

we will focus on kinetic dynamics instead, which corresponds to momentum gradient
descent in the context of machine learning [30, 23]. Classical studies, such as [40, 27],
have explored the exponential convergence of linear kinetic Langevin dynamics based
on hypocoercivity and functional inequalities. The kinetic MFL dynamics is studied
in [21] to model the momentum gradient descent for the training of neural networks
and its convergence to the unique invariant measure is proven without a quantitative
rate. The present work studies both the quantitative long-time behavior of the kinetic
MFL dynamics and its uniform-in-time propagation of chaos (POC) property, under a
functional convexity assumption, and we aim to provide a theoretical justification for the
momentum algorithm’s efficiency in practice.

1.1 Settings and main results

We give an informal preview of our settings and main results in this section. Let
F : P2(Rd)→ R be a mean field functional and denote by DmF : P2(Rd)×Rd → Rd its
intrinsic derivative. We aim to investigate the long-time behavior of the kinetic MFL
defined by

dXt = Vtdt,

dVt = −Vtdt−DmF
(
mx
t , Xt

)
dt+

√
2dWt, where mx

t = Law(Xt),

and its associated N -particle system defined by

dXi
t = V it dt

dV it = −V it dt−DmF
(
µXt

, Xi
t

)
dt+

√
2dW i

t , where µXt
=

1

N

N∑
j=1

δXj
t
.

Here Wt, (W i
t )
N
i=1 are independent d-dimensional Brownian motions. Denote mt =

Law(Xt, Vt) and mN
t = Law

(
X1
t , . . . , X

N
t , V

1
t , . . . , V

N
t

)
, and we suppose the initial con-

ditions m0 and mN
0 have finite second moments. We wish to show the convergence

mN
t → m⊗Nt when N → +∞ in a uniform-in-t way.

We assume

• the mean field functional F is convex in the functional sense;
• its intrinsic derivative (m,x) 7→ DmF (m,x) is jointly Lipschitz with respect to the
L1-Wasserstein distance.

• for every measure m ∈ P2(Rd), the probability measure proportional to
exp
(
− δF
δm (m,x)

)
dx satisfy a logarithmic Sobolev inequality (LSI) with a constant

uniform in m.
• its second and third-order functional derivatives satisfy certain bounds.

Under these assumptions, we are able to obtain

• when t→ +∞, the mean field flow mt converges exponentially to the mean field
invariant measure m∞;

• when t→ +∞, theN -particle flowmN
t converges approximately to theN -tensorized

mean field invariant measure m⊗N∞ , with an exponential rate uniform in N ;
• if 1

NW
2
2

(
mN

0 ,m
⊗N
0

)
→ 0 when N → +∞, then supt≥0

1
NW

2
2

(
mN
t ,m

⊗N
t

)
→ 0 and

supt≥1
1
NH

(
mN
t

∣∣m⊗Nt )
→ 0 when N → +∞.

1.2 Related works

We give in this section a short review of the recent progresses in the long-time
behavior and the uniform-in-time propagation of chaos property of McKean–Vlasov
dynamics, with an emphasis on kinetic ones. We refer readers to [5, 6] for a more
comprehensive review of propagation of chaos.
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Uniform propagation of chaos for kinetic MFL

Coupling approaches. The coupling approach involves constructing a joint probability
of the mean field and N -particle systems to allow comparisons between them. The
synchronous coupling method is employed in [3] and the uniform-in-time POC is shown
by assuming the strong monotonicity of the drift and the smallness of the mean field
interaction. The strong monotonicity is then relaxed by the reflection coupling method
in [11] and we refer readers to [36, 14, 21] for further developments. Let us remark that
the synchronous coupling gives often sharp contraction rates under strong convexity
assumptions, while the reflection coupling allows us to treat dynamics of more general
type but gives far-from-sharp contraction rates.

Functional approaches. Another approach to uniform-in-time POC is the functional
one, and this is also the major approach of this paper. In this situation in order to study
the long-time behaviors and propagation of chaos properties, we construct appropriate
(Lyapunov) functionals and investigate the change of their values along the dynamics.
The relative entropy is used as the functional in [29] and its follow-up work [16] to study
kinetic McKean–Vlasov dynamics with regular interactions. It is worth noting that the
relative entropy approach has been successful in handling singular interactions, thanks
to the groundbreaking work of Pierre-Emmanuel Jabin and Zhenfu Wang [20], and we
refer the readers to [13, 9, 33] for recent developments. However, we are not aware of
any works using the relative entropy functional (or its modifications) to study kinetic
diffusions with singular interactions.

Comparison to [7]. The present paper is a continuation of our previous work [7],
where the overdamped version of mean field Langevin dynamics is studied, and they
share a number of key features. We show the exponential convergence of the particle
system using the same componentwise decomposition of Fisher information and the
same componentwise log-Sobolev inequality. The uniform-in-time propagation of chaos
property for both dynamics is then obtained by combining the exponential convergence
of the mean field and particle flow. This paper is also different from [7] in a number of
aspects. First, as the dynamics is generated by a hypoelliptic operator instead of an
elliptic one, we use hypocoercivity to recover the exponential convergence. Second,
since we are not able to show hypercontractivity of the kinetic dynamics (let alone
reverse hypercontractivity), we prove the entropic propagation of chaos by studying its
short-time regularization effects. In this way we no longer restrict the initial condition
of the mean field dynamics, but as a trade-off we require a higher-order regularity
in measure of the energy functional. Finally, following in a remark in [7], we use an
approximation argument to remove the condition on the higher-order spatial derivatives
in this work.

1.3 Main contributions

Hypocoercivity for mean field systems. We extend the studies of the linear Fokker–
Planck equation in [40] to the dynamics with general (but always regular) mean field
interactions. In particular, we do not suppose the interaction is in form of a two-body
potential, which stands in contrast with [40, Theorem 56] and [29, 16]. Moreover, in
hypocoercive computations, we find that the contributions from the mean field interaction
can always be dominated by the “diagonal” terms in the Fisher information, already
present in the case of linear dynamics. Hence using the convexity of energy, we are
able to derive the hypocoercivity without restrictions on the size of the interaction.
Furthermore, our assumptions imply a uniform-in-N bound on the operator norm of the
second-order derivatives of the effective potential driving the N -particle system, and the
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Uniform propagation of chaos for kinetic MFL

entropic hypocoercivity is consequently uniform in N . This is different from the situation
of L2-hypocoercivity, where the condition given by Villani [40, (7.3)] gives dimension-
dependent constants and therefore is unsuitable for studies of particle systems, as
remarked in [15]. Finally, let us mention that we derive the entropic hypocoercivity
under minimal regularity assumptions, made possible by our approximation argument (of
functions and of mean field functionals) and the calculus in Wasserstein space developed
in [2].

Regularization in short time. We obtain two short-time regularization results for the
kinetic mean field dynamics. The first, from Wasserstein to entropy, is a consequence
of the logarithmic Harnack’s inequality, obtained by applying the coupling by change
of measure method of Panpan Ren and Feng-Yu Wang in [32] to the mean field and
N -particle diffusions. We remark also that very recently a similar inequality ([19, (3.13)])
is proved for the propagation of chaos of non-degenerate McKean–Vlasov diffusions.
The second regularization, from entropy to Fisher information, is obtained by adapting
Hérau’s functional in [40] to our mean field setting and follows from the same hypoco-
ercive computations as we prove the convergence of the mean field flow. We stress
that although much stronger regularization phenomena are present, for example from
measure initial values to Lp for every p > 1 and to Hk for every k ≥ 1, our results
have the advantage of growing at most linearly in dimension, making them suitable for
studying the N -particle systems under the limit N → +∞.

Propagation of chaos. Finally, using the exponential convergence and the short-time
regularizations, we derive the propagation of chaos for the kinetic MFL, i.e. bounds on
the distances between the particle system and the mean field system. In particular, the
initial value of the both systems can be arbitrary measures of finite second moments
without any further regularity constraints. Moreover, the error terms do not have any
dimension-dependence. It is noteworthy that our approach allows us to not rely on a
uniform-in-time log-Sobolev inequality for the mean field flow, and also that the dynamics
considered are realized on the whole space instead of the torus, standing in contrast
with previous works, e.g. [13, 24, 10].

1.4 Notations

Let d be a positive integer and x, v be elements of Rd. We denote the Euclidean
norm of x and v by |x| and |v| respectively. The letter z = (x, v) then denotes an element
of R2d with its Euclidean norm denoted by |z|2 = |x|2 + |v|2. For a d × d real matrix
M , we denote by |M |op its operator norm with respect to the Euclidean metric of Rd.
Let p ≥ 1. Define Pp(Rd) to be the space of probabilities on Rd of finite p-moment, i.e.
Pp(Rd) = {m ∈ P(Rd) :

∫
|x|pm(dx) < +∞}. We denote the Lp-Wasserstein metric by Wp

and refer readers to [2, Chapter 7] for its definition and elementary properties.
Let F : P2(Rd) → R be a mean field functional. Denote by δF

δm : P2(Rd) × Rd → R

its linear functional derivative and by DmF = ∇ δF
δm : P2(Rd) × Rd → Rd its intrinsic

derivative, if they exist. The definition of linear functional derivative on P2(Rd) can be
found in [4, Definition 5.43].

Let X and Y be random variables. We denote the distribution of X by Law(X) and

say X ∼ m if m = Law(X). We also say X
d
= Y if Law(X) = Law(Y ).

The set of couplings between probabilities µ and ν is denoted by Π(µ, ν).
Let N ≥ 2 be integer. The bold letters xN = (x1, . . . , xN ), vN = (v1, . . . , vN ) denote

respectively N -tuples of elements in Rd and zN = (z1, . . . , zN ) an N -tuple of elements in
R2d. We omit the subscript N when there are no ambiguities. Given xN = (x1, . . . , xN ) ∈
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RdN , we denote the corresponding empirical measure by

µxN
=

1

N

N∑
i=1

δxi .

For i = 1, . . . , N , we define −i = {1, . . . , N} \ {i}, that is, the complementary index set,
and we denote the empirical measures formed by the N − 1 points (xj)j 6=i by

µx−i
N

=
1

N − 1

∑
j 6=i

δxj .

For an RdN -valued random variable XN = (Xi)Ni=1, we can form the random empirical
measures µXN

, µX−i
N

.

Let I ⊂ {1, . . . , N} and J = {1, . . . , N} \ I be the complementary index set. Let Z be
an R2dN -valued random variable and and mN be its distribution, belonging to P(R2dN ).
We denote the marginal and the (regular) conditional distributions of mN by

mN,I = Law(Zi)i∈I ,

mN,I|J(zJ) = Law
(
(Zi)i∈I

∣∣Zjt = zj , j ∈ J
)
,

where the latter is defined mN,J -almost surely and zJ denotes the tuple (zj)j∈J . We
identify i with the singleton {i} when working with indices.

Whenever a measure m ∈ P(Rd) has a density with respect to the d-dimensional
Lebesgue measure, we denote its density function by m equally. The relative H(·|·)
between probabilities are always well defined and the absolute entropy H(·) is also
well defined if the measure in the argument has finite second moment. If a measure
m ∈ P(Rd) has distributional derivatives Dm representable by a finite Borel measure
and Dm is absolutely continuous with respect to m, we define its Fisher information by

I(m) =

∫ ∣∣∣∣Dmm
∣∣∣∣2m,

where Dm
m is the Radon–Nikodým derivative. Otherwise we set I(m) = +∞. One can

verify that I(m) is finite only if m ∈ W 1,1(Rd)1, and in this case I(m) =
∫ |∇m|2

m , ∇m
being the weak derivatives in L1(Rd;Rd). The Fisher information defined in this way
corresponds to the functional considered in [1, (2.26)]. If m is a measure on Rd having
finite Fisher information, and if γ is another measure on Rd having weakly differentiable
density with respect to the Lebesgue, we define the relative Fisher information by

I(m|γ) =

∫ ∣∣∣∣∇mm − ∇γ
γ

∣∣∣∣2m.
For nonnegative functions f : Rd → [0,+∞) we define its entropy by

Entm f = Em[f log f ]− Em[f ] logEm[f ],

which is well defined in [0,+∞] by Jensen’s inequality.

1We sketch the proof here. Suppose m has finite Fisher information. Set mn = m ? ρn for a mollifying
sequence (ρn)n∈N. Then we have ‖mn‖W1,1 ≤ C for all n ∈ N. By Gagliardo–Nirenberg, mn is uniformly
bounded in Lp for some p > 1, so upon an extraction of subsequence, (mn)n∈N converges to some m′ ∈ Lp

weakly. But mn → m in P. The two limits coincide, i.e. m = m′. Hence m has density with respect to the
Lebesgue and so does Dm.
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Uniform propagation of chaos for kinetic MFL

Organization of paper. In Section 2, we introduce our assumptions, define the kinetic
mean field Langevin and the particle system, and state our main results. We provide
in Section 3 an exemplary dynamics modeling neural networks’ training and present
our numerical experiments. Moving on to the proofs, we first show in Section 4 the
exponential convergence of the mean field and particle system dynamics. We then study
in Section 5 finite-time propagation of chaos and regularizations of the kinetic MFL
before combining all previous results and showing the propagation of chaos theorem in
its full form. Finally, several technical results are proved in the appendices.

2 Assumptions and main results

Assumptions. Let F : P2(Rd)→ R be a mean field functional. We suppose F is convex
in the sense that for every t ∈ [0, 1] and every m, m′ ∈ P2(Rd),

F
(
(1− t)m+ tm′

)
≤ (1− t)F (m) + tF (m′). (2.1)

Suppose also its intrinsic derivative DmF : P2(Rd)×Rd → Rd exists and satisfies

∀x, x′ ∈ Rd, ∀m,m′ ∈ P2(Rd),

|DmF (m,x)−DmF (m′, x′)| ≤MF
mmW1(m,m′) +MF

mx|x− x′| (2.2)

for some constants MF
mm, MF

mx ≥ 0. For each m ∈ P2(Rd) we define a probability
measure Πx(m) on Rd by Πx(m)(dx) ∝ exp

(
− δF
δm (m,x)

)
dx and suppose Πx(m) satisfies

the ρx-logarithmic Sobolev inequality (LSI), uniformly in m, for some ρx > 0, that is, for
every m ∈ P2(Rd),

∀f ∈ C1
b (Rd), ρx EntΠx(m)(f

2) ≤ EΠx(m)

[
|∇f |2

]
. (2.3)

Finally for some of the results we suppose additionally that F is third-order differentiable
in measure with supm∈P2(Rd) supx,x′∈Rd

∣∣D2
mF (m,x, x′)

∣∣
op
≤MF

mm and

∀m,m′ ∈ P2(Rd), ∀x ∈ Rd,∣∣∣∣∫∫ [∇x δ3F

δm3
(m′, x, x′, x′)−∇x

δ3F

δm3
(m′, x, x′, x′′)

]
m(dx′)m(dx′′)

∣∣∣∣
≤MF

mmm (2.4)

for some constant MF
mmm.

Definition of m̂ and functional inequalities. For each m ∈ P(R2d), we define m̂ to
be the probability on R2d satisfying

m̂(dxdv) ∝ exp

(
− δF
δm

(mx, x)− 1

2
|v|2
)
dxdv, (2.5)

where mx is the spatial marginal of m. Sometimes we will abuse the notation and define
for a measure m′ x ∈ P2(Rd), the probability m̂′ x(dxdv) ∝ exp

(
− δF
δm (m′ x, x)− 1

2 |v|
2
)
dxdv.

If F satisfies (2.3) with the LSI constant ρx, then setting

ρ = ρx ∧ 1

2
, (2.6)

we have that the ρ-LSI holds for m̂: for every f ∈ C1
b (R2d),

ρEntm̂(f2) ≤ Em̂
[
|∇f |2

]
. (2.7)
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As a consequence, we have the Poincaré inequality: for every f ∈ C1
b (R2d),

2ρVarm̂(f) ≤ Em̂
[
|∇f |2

]
; (2.8)

and Talagrand’s T2 transport inequality: for every µ ∈ P2(R2d),

2ρW 2
2 (µ, m̂) ≤ H(µ|m̂). (2.9)

Mean field and particle system. We study the mean field kinetic Langevin dynamics,
that is, the following McKean–Vlasov SDE

dXt = Vtdt,

dVt = −Vtdt−DmF
(
mx
t , Xt

)
dt+

√
2dWt, where mx

t = Law(Xt).
(2.10)

Let N ≥ 2. The corresponding N -particle system is defined by

dXi
t = V it dt

dV it = −V it dt−DmF
(
µXt

, Xi
t

)
dt+

√
2dW i

t , where µXt
=

1

N

N∑
j=1

δXj
t
.

(2.11)

Here W and W i are standard Brownian motions in Rd, and (W i)Ni=1 are independent.
Their marginal distributions mt = Law(Xt), mN

t = Law(Xt) = Law(X1
t , . . . , X

N
t ) solve

respectively the Fokker–Planck equations:

∂tm = ∆vm+∇v · (mv)− v · ∇xm+DmF
(
mx
t , x
)
· ∇vm, (2.12)

∂tm
N =

N∑
i=1

(
∆vim

N +∇vi · (mNvi)− vi · ∇ximN +DmF (µx, x
i) · ∇vimN

)
, (2.13)

where on the second line µx := 1
N

∑N
i=1 δxi . The mean field equation (2.12) is non-linear

while the N -particle system equation (2.13) is linear. We will show in Lemma 4.5 the
wellposedness of the mean field dynamics (2.12) with initial conditions of finite second
moment.

Remark 2.1. We have fixed the volatility and the friction constants to simplify the
computations. In order to apply our results to the diffusion process defined by

dXt = αVtdt,

dVt = −γVtdt−DmF
(
Law(Xt), Xt

)
dt+ σdWt,

(2.14)

with α, γ, σ > 0, we introduce the new variables:

x′ =
(2γ3)1/2

ασ
x, v′ =

(2γ)1/2

σ
v, t′ = γ−1t,

define m′ to be the push-out of measure m under x 7→ x′, and set

F ′(m′) =

(
2

γσ2

)1/2

F (m).

Then the stochastic process t′ 7→ (X ′t′ , V
′
t′) satisfy

dX ′t′ = V ′t′dt
′,

dV ′t′ = −V ′t′dt′ −DmF
′(Law(X ′t′), X

′
t′
)
dt+

√
2dW ′t′ ,
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where W ′t′ := γ1/2Wt is a standard Brownian motion. In the same way we can treat the
particle system defined by

dXi
t = αV it dt

dV it = −γV it dt−DmF
(
µXt

, Xi
t

)
dt+ σdW i

t , where µXt
=

1

N

N∑
j=1

δXj
t
.

(2.15)

Free energies and invariant measures. For measures m ∈ P2(R2d), mN ∈ P2(R2dN ),
we introduce the mean field and N -particle free energies:

F(m) = F (mx) +
1

2

∫
|v|2m(dxdv) +H(m), (2.16)

FN (mN ) =

∫ (
NF (µx) +

1

2
|v|2

)
mN (dxdv) +H(mN ). (2.17)

The functionals are well defined with values in (−∞,+∞]. We will also work with
probability measures, m∞ ∈ P2(R2d) and mN

∞ ∈ P2(R2dN ), satisfying

m∞(dxdv) ∝ exp

(
− δF
δm

(mx
∞, x)− 1

2
|v|2
)
dxdv, (2.18)

mN
∞(dxdv) ∝ exp

(
−NF (µx)− 1

2
|v|2

)
dxdv, (2.19)

and having finite exponential moments, i.e., the integrals
∫

exp
(
α(|x| + |v|)

)
m∞(dxdv)

and
∫

exp
(
α(|x|+ |v|)

)
mN
∞(dxdv) are finite for every α ≥ 0. We call m∞, mN

∞ invariant
measures to the dynamics (2.12) and (2.13) respectively. The existence and uniqueness
of the invariant measures are guaranteed by our assumptions (2.1) to (2.3), as will be
stated in Lemma 4.1.

Main results. Recall that mt and mN
t are the respective marginal distributions of the

mean field and the N -particle system (2.10) and (2.11). We first prove the exponential
entropic convergence result for the MFL dynamics (2.10).

Theorem 2.1 (Entropic convergence of MFL). Assume F satisfies (2.1) to (2.3). If m0

has finite second moment, finite entropy and finite Fisher information, then there exist
constants

C0 = C0

(
MF
mx,M

F
mm

)
, κ = κ

(
ρx,MF

mx,M
F
mm

)
such that for every t ≥ 0,

F(mt)−F(m∞) ≤
(
F(m0)−F(m∞) + C0I(m0|m̂0)

)
e−κt. (2.20)

The proof of the theorem is postponed to Section 4.2. We note that the proof only
relies on the W2-Lipschitz continuity of m 7→ DmF (m,x), contrary to the W1 one stated
in (2.2).

Our second major contribution is the uniform-in-N exponential entropic convergence
of the particle systems.

Theorem 2.2 (Entropic convergence of particle systems). Assume F satisfies (2.1)
to (2.3). If mN

0 has finite second moment, finite entropy and finite Fisher information for
some N ≥ 2, then there exist constants

C0 = C0

(
MF
mx,M

F
mm

)
, C1 = C1

(
ρx,MF

mx,M
F
mm

)
, κ = κ

(
ρx,MF

mx,M
F
mm

)
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such that if N > C1/κ, then for every t ≥ 0,

FN (mN
t )−NF(m∞) ≤

(
F
(
mN

0

)
−NF(m∞) + C0I

(
mN

0

∣∣mN
∞
))
e−(κ−C1/N)t

+
C1d

κ− C1/N
. (2.21)

The proof of the theorem is postponed to Section 4.3.

Remark 2.2. Strictly speaking, the result (2.21) does not imply that the particle systems
converge uniformly. We only show 1

NF
N
(
mN
t

)
approaches the mean field minimum

F(m∞) uniformly quickly until they are O(N−1)-close to each other.

Remark 2.3. Theorems 2.1 and 2.2 state results concerning the convergence of the
respective free energies, which we will also call “convergence of entropy” or “entropic
convergence”, since in both cases the differences of free energies are related to relative
entropies, as shown in Lemmas 4.2 and 4.3.

We now present the main theorem, which establishes the uniform-in-time propagation
of chaos in both the Wasserstein distance and the relative entropy. The results are
direct consequences of the exponential convergence in Theorems 2.1 and 2.2 and the
regularization phenomena to be studied in Section 5.

Theorem 2.3 (Wasserstein and entropic propagation of chaos). Assume F satisfies
(2.1) to (2.4). If m0 belongs to P2(Rd) and mN

0 belongs to P2(RdN ) for some N ≥ 2,
then there exist constants C1 = C1

(
MF
mx,M

F
mm,M

F
mmm

)
, C2 = C2

(
ρx,MF

mx,M
F
mm

)
and

κ = κ
(
ρx,MF

mx,M
F
mm

)
such that if N > C2/κ, then for every t > 0,

W 2
2

(
mN
t ,m

⊗N
t

)
≤ min

{
C1W

2
2

(
mN

0 ,m
⊗N
0

)
eC1t + C1(eC1t − 1)(Varm0 + d),

C2N

(t ∧ 1)6
W 2

2 (m0,m∞)e−κt +
C2

(t ∧ 1)6
W 2

2

(
mN

0 ,m
⊗N
∞
)
e−(κ−C2/N)t +

C2d

κ− C2/N

}
;

(2.22)

moreover, for every t and s such that s+ 1 ≥ t > s ≥ 0,

H
(
mN
t

∣∣m⊗Nt )
≤ C1

(t− s)3
W 2

2 (mN
s ,m

⊗N
s ) + C1(eC1(t−s) − 1)(Varms + d). (2.23)

The proof of the theorem is postponed to Section 5.4.

Comments on the assumptions. Compared to our previous work [7], we have re-
moved the technical assumption that x 7→ DmF (m,x) has bounded higher-order deriva-
tives by a mollifying procedure of the mean field functional. However, the spatial
Lipschitz constant MF

mx, appearing in the assumption (2.2), will contribute to the con-
stants, especially the rate of convergence κ, in our theorems. Nevertheless, this behavior
is expected for kinetic dynamics, as this dependency is already present for the linear
Fokker–Planck dynamics in [40]. Finally, we introduce the new condition (2.4) on the
second and third-order derivatives in measure of the mean field functional. The condition
(2.4) is used to obtain O(1) errors in the propagation of chaos bounds (2.22) and (2.23)
in Theorem 2.3, which are stronger than the dimension-dependent errors obtained from
the method of Fournier and Guillin [12].
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3 Application: training neural networks by momentum gradient
descent

We have given in Section 3 of our previous work [7] several examples of mean field
functionals satisfying conditions (2.1) to (2.3) of our theorems, and the only additional
condition that remains to verify is the bound on the higher-order measure derivative
(2.4). In the following we will recall the mean field formulation of the loss of two-layer
neural networks and its corresponding kinetic dynamics (see [7, Examples 2 and 4]), and
verify that it satisfies indeed the additional assumption.

3.1 Mean field formulation of neural network

Recall that the structure of a two-layer neural network is determined by its feature
map:

Rd 3 z 7→ Φ(θ; z) := `(c)ϕ(a · z + b) ∈ Rd
′
,

where θ := (c, a, b) ∈ Rd′ ×Rd ×R =: S is the parameter of a single neuron, ϕ : R→ R is
a non-linear activation function satisfying the squashing condition (see [7, (3.4)]), and
` : R→ [−L,L] is a truncation function with threshold L ∈ (0,+∞). Here the action of
the truncation is tensorized: `(c) = `(c1, . . . , cd

′
) :=

(
`(c1), . . . , `(cd

′
)
)

for a d′-dimensional

vector c = (c1, . . . , cd
′
). Then given N neurons with respective parameters θ1, . . . , θN ,

the associated network’s output reads

Rd 3 z 7→ ΦN (θ1, . . . , θN ; z) =
1

N

N∑
i=1

Φ(θi; z) ∈ R. (3.1)

Here z should be considered as the input of the network, i.e. the feature, and the
value ΦN (θ1, . . . , θN ; z) should correspond to the label. We wish to find the optimal
neuron parameters (θi)

N
i=1 for a possibly unknown distribution of feature-label tuples

µ ∈ P(Rd+d′). In order to quantify the goodness of networks, we define the loss:

FNNNet(θ
1, . . . , θN ) =

N

2

∫
|y − ΦN (θ1, . . . , θN ; z)|2µ(dzdy). (3.2)

It is proposed in [18, 7] that instead of minimizing the original loss (3.2), we consider
the mean field output function EΘ∼m[Φ(Θ; ·)] and minimize the mean field loss

FNNNet(m) =

∫ ∣∣y − EΘ∼m[Φ(Θ; z)]
∣∣2µ(dzdy). (3.3)

We also add a quadratic regularizer

FExt(m) =
λ

2

∫
|θ|2m(dθ)

with regularization parameter λ > 0. The final optimization problem then reads

inf
m∈P2(S)

F (m) := FNNet(m) + FExt(m). (3.4)

Following the calculations in [7] we can show that if both the truncation and activation
function are bounded and has bounded derivatives of up-to-second order, then the
conditions (2.1) to (2.3) are verified. Finally, the third-order derivatives δ3F

δm3 is a constant
thanks to the fact that the loss function is quadratic, and therefore the condition (2.4) is
satisfied with MF

mmm = 0.
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Remark 3.1. Following [7, Remark 3.6], we recognize that the SDE (2.10) describes the
continuous version of the gradient descent algorithm with momentum. Among various
momentum gradient descent methods commonly used to train neural networks, the most
prevalent ones are RMSProp and Adam algorithms (see [17, 22]), where the momentum
is accumulated and the step size is adapted along the dynamics. In [26, 37, 31] the
authors studied the convergence of these momentum-based algorithms and compared
them to algorithms without momentum based on optimization theory. We note that
estimates of the discretization error and optimal parameters can also be found in these
studies.

3.2 Numerical experiments

We present our numerical experiments in this section. Our experiments are based on
the discretized version of a particle system dynamics (2.15). We first explain the opti-
mization problem and the numerical algorithm, and then present our two experiments:
the first investigates the convergence behavior as the number of particles tends to
infinity, and the second compares the kinetic dynamics to the corresponding overdamped
dynamics.

Problem setup and momentum algorithm. We aim to solve a supervised learning
problem: our goal is to classify the handwritten digits “4” and “6” by a two-layer neural
network. We randomly choose K = 104 samples from the MNIST dataset [25] and denote
by (zk)Kk=1 the figures in 28 × 28 pixel format, i.e. each zk belongs to R28×28 = R784,
and by (yk)Kk=1 the one-hot vectors for the two classes of digits, i.e. if the k-th figure
corresponds to the digit “4”, then yk = (1, 0), otherwise yk = (0, 1). See Figure 1 for
random samples in the dataset. We choose N particles and use the sigmoid function as
the activation, i.e. ϕ(x) = 1

/(
1 + exp(−x)

)
. The truncation function is fixed by

`(x) = L tanh(x/L) = L
exp(2x/L)− 1

exp(2x/L) + 1

and its threshold equals L. The quadratic regularization parameter is denoted by λ.
Following the arguments of [7] and the precedent section, all the conditions of our
theorems (2.1) to (2.4) are satisfied. In the beginning of training process, the neuron
positions (Θi

0)Ni=1 = (Cx,i0 , Ax,i0 , Bx,i0 )Ni=1 and momenta (Ψi
0)Ni=1 = (Cv,i0 , Av,i0 , Bv,i0 )Ni=1 are

sampled independently from a given initial distribution mx
0 , mv

0 ∈ P(R2 ×R784 ×R). We

Figure 1: Randomly chosen handwritten digits “4” and “6” from the MNIST dataset.
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Algorithm 1: Noised momentum gradient descent for training a two-layer neural
network

Input: number of particles N , truncation L, data set (zk, yk)Kk=1, noise σ, friction
γ, l2 regularization λ, initial distribution (mx

0 ,m
v
0), time step ∆t, time

horizon T
Output: (Θi

T )Ni=1

generate i.i.d. Θi
0 =

(
Ax,i0 , Bx,i0 , Cx,i0

)
∼ mx

0 for i = 1, . . . , N ;

generate i.i.d. Ψi
0 =

(
Av,i0 , Bv,i0 , Cv,i0

)
∼ mv

0 for i = 1, . . . , N ;
for t = 0, ∆t, 2∆t, . . . , T −∆t do

generate i.i.d. N i
t ∼ N (0, 1) for i = 1, . . . , N ;

// update particles according to discretized underdamped Langevin
for i = 1, . . . , N do

Ψi
t+∆t ← (1− γ∆t)Ψi

t −DmFNNet

(
1
N

∑N
j=1 δΘj

t
,Θi

t

)
∆t− λΘi

t∆t+ σ
√

∆tN i
t ;

Θi
t+∆t ← Θi

t + Ψi
t+∆t∆t;

// where DmFNNet

(
1
N

∑N
j=1 δΘj

t
,Θi

t

)
= 1

K

∑K
k=1

(
yk −ΨN (Θ1

t , . . . ,Θ
N
t ; zk)

)
∂Ψ
∂θ (Θi

t; zk)

update the parameters (Θi
0)Ni=1 and (Ψi

0)Ni=1 following the discrete-time version of the
underdamped Langevin SDE (2.14) with fixed set of parameters (α, γ, σ), that is, we
calculate the neurons’ evolution by Algorithm 1.

Convergence when N → +∞. To study the behavior of the momentum training
dynamics when N → +∞ we conduct independent experiments with the an increasing
number of particles: N = 2P for P = 5, 6, . . . , 10 and repeat the experiment 10 times for
each N . The hyperparameters for this experiment are listed in the second column of
Table 1.

Table 1: Hyperparameters of neural networks’ trainings.

Hyperparameter First Exp.’s Value Second Exp.’s Value

N [128, 256, 512, 1024, 2048] 256

∆t 0.02 0.01

T 300 500

mx
0 N (0, 0.01) N (0, 0.01)

mv
0 N (0, 0.25) N (0, 0.01)

L 500 500

λ 10−4 10−3

α 1 1

γ 0.1 0.1

σ 0.01
√

2 0.01
√

2

To quantity the convergence, we compute 1
N F

N
NNet

(
Θ1
t , . . . ,Θ

N
t

)
and 1

N F
N
Kinet

(
Ψ1
t , . . . ,

ΨN
t

)
, where FNKinet(Ψ

1, . . . ,ΨN ) := 1
2

∑N
i=1 |Ψi|2. We then compute its average of the

respective quantities over the 10 repeated runs. The evolutions of 1
N F

N
NNet and 1

N F
N
NNet +

1
N F

N
Kinet are plotted in Figure 2 and Figure 3 respectively, and can be characterized by

two distinct phases. In the first phase, both the quantities decrease and the second
quantity decreases exponentially, for every N . We also find that in this phase the
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Figure 2: Individual (shadowed) and 10-
averaged (bold) losses without kinetic
energy versus time.

Figure 3: Individual (shadowed) and 10-
averaged (bold) losses with kinetic en-
ergy versus time.

Figure 4: Average values of 1
N FNNet +

1
N FKinet over the last 500 epochs. The mean
(black squares) and standard derivations
(error bars) are calculated from the 10 in-
dependent runs. Dashed curve fits the
data.

Figure 5: Target function 1
N FNNet for

underdamped Langevin (blue) and over-
damped Langevin (red) versus time.

convergence rates are almost the same for different N and this is coherent with the
behavior indicated by our theoretical upper bound (2.21). We also observe that 1

N F
N
NNet

fluctuates in a stronger way than 1
N F

N
NNet + 1

N F
N
Kinet. In the second phase, both the values

cease to decrease but the remnant values differ for different N .
To investigate the relationship between the remnant values in the second phase and

the number of particles N , we compute the average value of 1
N F

N
NNet + 1

N F
N
Kinet of the last

500 training epochs for each individual run and plot their values in Figure 4. Motivated
by the upper bound (2.21) in Theorem 2.2, we fit the remnant values by C ′ + C

N and find
the values are well fitted by this curve.

Comparison to algorithm without momentum. We also investigate the difference
between gradient descent algorithms with and without momentum by working on the
same set of hyperparameters, listed in the last column of Table 1. It is found that the
algorithm with momentum leads to much stronger fluctuations compared the algorithm
without momentum (see Figure 5). Both algorithms cease to decrease after certain
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training epochs, but the momentum algorithm leads to better loss in the end. This may
be explained by the fact that the presence of momentum helps the particles to escape
local minima.

4 Entropic convergence

4.1 Collection of known results

Before moving on to the proofs, we first state some elementary results without proofs.
They are either immediate consequences of the corresponding ones in our previous work
[7], or easy adaptations thereof.

Lemma 4.1 (Existence and uniqueness of invariant measures). If F satisfies (2.1)
to (2.3), then there exist unique measures m∞ and mN

∞ satisfying (2.18) and (2.19)
respectively and they have finite exponential moments.

Lemma 4.2 (Mean field entropy sandwich). Assume F satisfies (2.1) to (2.3). Then for
every m ∈ P2(R2d), we have

H(m|m∞) ≤ F(m)−F(m∞) ≤ H(m|m̂) ≤
(

1 +
MF
mm

ρ
+

(MF
mm)2

2ρ2

)
H(m|m∞), (4.1)

where ρ is defined by (2.6). Here, the leftmost inequality holds even without the uniform
LSI condition (2.3), once there exists a measure m∞ satisfying (2.18) and having finite
exponential moments.

Lemma 4.3 (Particle system’s entropy inequality). Assume that F satisfies (2.1) and
that there exists a measure m∞ ∈ P2(R2d) verifying (2.18). Then for all mN ∈ P2(RdN )

of finite entropy, we have

H(mN |m⊗N∞ ) ≤ FN (mN )−NF(m∞). (4.2)

Lemma 4.4 (Information inequalities). Let X1, . . . , XN be measurable spaces, µ be a
probability on the product space X = X1 × · · · ×XN and ν = ν1 ⊗ · · · ⊗ νN be a σ-finite
measure. Then

N∑
i=1

H(µi|νi) ≤ H(µ|ν) ≤
N∑
i=1

∫
H
(
µi|−i(·|x−i)

∣∣νi)µ−i(dx−i). (4.3)

Here we set the rightmost term to +∞ if the conditional distribution µi|−i does not exist
µ−i-a.e.

4.2 Mean field system

In this section we study the mean field system described by the Fokker–Planck
equation (2.12) and the SDE (2.10). Our aim is to prove Theorem 2.1. To this end, we
first show its wellposedness and regularity.

Lemma 4.5. Suppose F satisfies (2.2). Then for every initial value m0 of finite second
moment, the equation (2.12) admits a unique solution in C

(
[0,∞);P2(Rd)

)
. Moreover,

for every t > 0, the measure mt is absolutely continuous with respect to the Lebesgue
measure.

Proof. Since the drift DmF (·, ·) of the SDE system (2.10) is jointly Lipschitz in measure
and in space by our condition (2.2), the existence and uniqueness of the solution is
standard.
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To show the existence of density we recall Kolmogorov’s fundamental solution

ρt(x, v;x′, v′) :=

( √
3

2πt2

)d
exp

(
−3|x− (x′ + tv′)|2

t3

+
3
(
x− (x′ + tv′)

)
· (v − v′)

t2
− |v − v

′|2

t

)
associated to the differential operator ∂t − ∆v + v · ∇x. Then the Duhamel’s formula
holds in the sense of distributions:

mt =

∫
ρt(·; z′)m0(dz′)

+

∫ t

0

∫∫
ρs(·;x′, v′)∇v′ ·

(
mt−s(dx

′dv′)
(
v′ +DmF (mx

t−s, x
′)
))
ds. (4.4)

Since the first moment of mt is bounded, that is, for every T > 0, supt∈[0,T ]

∫
(|v| +

|x|)mt(dxdv) < +∞, we can integrate by parts in the second term of (4.4) and obtain

‖mt‖L1 ≤ 1 + C

∫ t

0

sup
x′,v′
‖∇v′ρs(·;x′, v′)‖L1ds.

By explicit computations we have supx′,v′‖∇v′ρs(·;x′, v′)‖L1 = O(s−1/2), from which the
existence of the density follows.

We now introduce a technical condition on the mean field functional: the mapping
x 7→ DmF (m,x) is fourth-order differentiable with derivatives continuous in measure
and in space, and satisfying

sup
m∈P2(Rd)

sup
x∈Rd

∣∣∇kDmF (m,x)
∣∣ < +∞, k = 2, 3, 4. (4.5)

This condition will be used to derive some intermediate results in the following studies
of the mean field dynamics.

Definition 4.6 (Standard algebra). We define the standard algebra A+ to be the set of
C4 functions h : R2d → (0,∞) for which there exists a constant C such that

|log h(x, v)| ≤ C(1 + |x|+ |v|) and
4∑
k=1

∣∣∇kh(x, v)
∣∣ ≤ exp

(
C(1 + |x|+ |v|)

)
holds for every (x, v) ∈ R2d. For a collection of functions (hι)ι∈I we say hι ∈ A+ uniformly
for ι ∈ I or (hι)ι∈I ⊂ A+ uniformly, if there exists a constant C such that the previous
bounds holds for every hι, ι ∈ I.

Proposition 4.7 (Density of A+). Assume F satisfies (2.2) and (4.5) and there exists a
measure m∞ satisfying (2.18) and having finite exponential moments. Then for every
m ∈ P2(Rd) with finite entropy and finite Fisher information, there exists a sequence of
measures (mn)n∈N such that mn/m∞ ∈ A+ and

W2(mn,m)→ 0, H(mn)→ H(m), I(mn)→ I(m)

when n→ +∞.
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Proof. Let ε be arbitrary positive real. Put h = m/m∞. Define h′n = (h ∧ n) ∨ 1
n and the

associated probability measure m′n = h′nm∞
/∫

h′nm∞. Let N ∈ N be big enough so that∫
h′Nm∞ > 0. Note that

sup
n≥N
|x|2m′n(x) ≤ |x|2m∫

h′Nm∞
,

that is to say, the second moments of (m′n)n∈N are uniformly bounded. Together with the
fact that the density of m′n converges to that of m pointwise, we have m′n → m in P2. By
the dominated convergence theorem, the sequence of measures m′n satisfies

H(m′n) =

∫
log(h′nm∞)h′nm∞∫

h′nm∞
− log

∫
h′nm∞ →

∫
m logm, when n→ +∞.

Moreover, we have the convergence of Fisher information as∫
|∇(h′nm∞)|2

h′nm∞
=

∫ [
|∇m∞|2h′n

m∞
+

(
2
∇h · ∇m∞
hm∞

+
|∇h|2m∞

h

)
11/n≤h≤n

]
converges to I(m) when n → +∞, where we used the fact that the weak derivatives
satisfy ∇h′n = ∇h11/n≤h≤n. Hence we may choose n0 ∈ N such that

W2(mn0
,m) +

∣∣H(mn0
)−H(m)

∣∣+ |I(mn0
)− I(m)| ≤ ε

2
.

Now setm′′n = m′n0
?ηn, where (ηn)n∈N is a sequence of smooth mollifiers supported in the

unit ball. We have m′′n → m′n0
in P2. By the convexity of entropy and Fisher information

we have H(m′′n) ≤ H
(
m′n0

)
and I(m′′n) ≤ I

(
m′n0

)
, and by the lower semicontinuities in

Lemma A.1 we have lim infn→+∞H(m′′n) ≥ H
(
m′n0

)
and lim infn→+∞ I(m′′n) ≥ I

(
m′n0

)
.

Hence,
W2

(
m′′n,m

′
n0

)
+
∣∣H(m′′n)−H(m′n0

)∣∣+
∣∣I(m′′n)− I(m′n0

)∣∣→ 0

when n → +∞. So we pick another n1 ∈ N such that W2

(
m′′n1

,m′n0

)
+
∣∣H(m′′n1

)
−

H
(
m′n0

)∣∣+
∣∣I(m′′n1

)
− I
(
m′n0

)∣∣ < ε/2.
It remains to verify that m′′n1

/
m∞ belongs to A+. By the definition we have

m′′n1

m∞
=

(h′′m∞) ? ρn1

m∞

for some h′′ with 0 < inf h′′ ≤ suph′′ < +∞. Hence for every z ∈ R2d,

inf h′′
infB(z,1)m∞

m∞(z)
≤
m′′n1

(z)

m∞(z)
≤ suph′′

supB(z,1)m∞

m∞(z)
.

On the other hand, the gradient of m∞ satisfies |∇ logm∞(z)| ≤ |DmF (m∞, x)|+ |v| for
every z = (x, v) ∈ R2d. In particular, we have

exp
(
−C(1 + |x|+ |v|)

)
≤

infB(z,1)m∞

m∞(z)
≤

supB(z,1)m∞

m∞(z)
≤ exp

(
C(1 + |x|+ |v|)

)
,

for some constant C. Therefore, m′′n1

/
m∞ verifies the first condition of A+.

Now verify the conditions on the derivatives. The derivatives read

∇k
(
m′′n1

m∞

)
=

k∑
j=0

(
k

j

)
(h′′m∞) ?∇jρn1

m∞
·m∞∇k−j

(
m−1
∞
)
.

For each term in the sum, we can bound its first part by∣∣∣∣ (h′′m∞) ?∇jρn1
(z)

m∞(z)

∣∣∣∣ ≤ exp
(
C(1 + |z|)

)
,
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using the same method that we used to verify the first condition of A+. Moreover, since
our assumptions (2.2) and (4.5) imply

|∇ logm∞(z)| ≤ C
(
1 + |z|

)
and

∣∣∇k logm∞(z)
∣∣ ≤ C for k = 2, 3, 4,

the second part of each term of the sum, m∞∇k−j
(
m−1
∞
)
, is of polynomial growth. The

proof is then complete.

Then we show the stability of the set A+ under the mean field flow. This property
will be used to justify the computations in the proof of Theorem 2.1, as is usual in the
analysis of PDE.

Proposition 4.8 (Stability of A+ under flow). Assume that F satisfies (2.2) and (4.5) and
that there exists a measure m∞ satisfying (2.18) and having finite exponential moments.
Let (mt)t∈[0,T ] ∈ C([0, T ];P2(Rd)) be a solution in the sense of distributions to the mean
field Fokker–Planck equation (2.12). If m0/m∞ ∈ A+, then mt/m∞ ∈ A+ uniformly for
t ∈ [0, T ]. In particular, mt is a classical solution to the Fokker–Planck equation.

Proof. In the following C will denote a constant depending on MF
mx, MF

mm, the initial
value h0 = h(0, ·) := m0/m∞, the time interval T and the bounds on the higher-order
derivatives maxk=2,3,4 supm,x

∣∣∇kDmF (m,x)
∣∣, and it may change from line to line. For a

given quantity Q, we denote by CQ a constant depending additionally on Q.
Denote bt(x) = −DmF (mt, x) and b∞(x) = −DmF (m∞, x). We also define ht(x) =

mt(x)/m∞(x). The relative density solves

∂th = ∆vh− v · ∇vh− v · ∇xh− bt · ∇vh+ (bt − b∞) · vh. (4.6)

Fix t ∈ [0, T ]. We construct for every z = (x, v) ∈ R2d, the stochastic process Zt,zs =

(Xt,z, V t,z), solving

dXt,z
s = −V t,zs ds,

dV t,zs = −V t,zs ds− bt−s
(
Xt,z
s

)
ds+

√
2dWs

for s ∈ [0, t] with the initial value Xt,z
0 = x, V t,z0 = v and the same Brownian motion

(Ws)s∈[0,t].

Regularity of Zt,zs . Set M t,z = sups∈[0,t]

∣∣Zt,zs ∣∣. By Itō’s formula and Doob’s maximal
inequality, the processes satisfy for every α ≥ 0,

E
[
exp(αM t,z)

]
≤ exp

(
Cα(1 + |z|)

)
. (4.7)

Thanks to the assumption on the uniform boundedness of the higher-order derivatives
(4.5), the mapping z 7→ Zt,zs is C4 and the partial derivatives solve the Cauchy–Lipschitz
SDEs for k = 1, 2, 3, 4:

d∇kXt,z
s = −∇kV t,zs ds,

d∇kV t,zs = −∇kV t,zs ds−
k∑
j=1

∇jbt−s
(
Xt,z
s

)
Bk,j

(
∇Xt,z

s , . . . ,∇k−j+1Xt,z
s

)
ds,

where Bk,j is a k − j + 1-variate polynomial and in particular Bk,1(x1, . . . , xk) = xk. The
initial values of the SDEs read

∇Zt,z0 = Id and ∇kZt,z0 = 0 for k = 2, 3, 4.
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By induction we can obtain the almost sure bound

max
k=1,2,3,4

sup
s∈[0,t]

∣∣∇kZt,zs ∣∣ ≤ C. (4.8)

Regularity of h by Feynman–Kac. Denote g(t, z) = g(t, x, v) =
(
bt(x) − b∞(x)

)
· v. It

satisfies ∣∣g(t, z)
∣∣ ≤MF

mmW2(mt,m∞)|v| ≤MF
mm sup

t∈[0,T ]

W2(mt,m∞)|v| = C|v|

and also
∣∣∇kg(t, z)

∣∣ ≤ C
(
1 + |z|

)
for k = 1, 2, 3, 4. The Feynman–Kac formula for the

parabolic equation (4.6) reads

h(t, z) = E

[
exp

(∫ t

0

g
(
t− s, Zt,zs

)
ds

)
h
(
0, Zt,zt

)]
. (4.9)

Using the method in the proof of [7, Proposition 4.12], we can prove

|log h(t, z)| ≤ C(1 + |z|).

Moreover, thanks to the estimates (4.8), we can apply the dominated convergence
theorem to the Feynman–Kac formula (4.9) and obtain that z 7→ h(t, z) belongs to C4

with partial derivatives

∇kh(t, z) =

k∑
j=0

E

[
exp

(∫ t

0

g
(
t− s, Zt,zs

)
ds

)
Pj

(∫ t

0

∇zg
(
t− s, Zt,zs

)
ds, . . . ,

∫ t

0

∇jzg
(
t− s, Zt,zs

)
ds

)
∇k−jz h

(
0, Zt,zt

)]
,

where Pj is a j-variate polynomial. Note that

∇kzf(Zt,zs ) =

k∑
`=1

∇`f
(
Zt,zs

)
Bk,`

(
∇Zt,zs , . . . ,∇k−`+1Zt,zs

)
holds for f = g(t− s, ·), s ∈ [0, t] and for f = h(0, ·). We apply the bounds on

∣∣∇kg∣∣, ∣∣∇kh∣∣
for k = 0, 1, 2, 3, 4 and the exponential moment bound (4.7) to obtain that

∣∣∇kh(t, z)
∣∣ ≤

exp
(
C(1 + |z|)

)
for k = 1, 2, 3, 4. Finally, the derivatives ∇h,∇2h exist and one can show

that they are continuous in time by differentiating (4.6) twice in space. So again by the
equation (4.6) we have ∂th is continuous and therefore exists classically. Thus mt is a
classical solution to the Fokker–Planck equation (2.12).

Remark 4.1. The polynomials appearing in the previous proof belong to the non-
commutative free algebras over R of respective number of indeterminates instead
of the usual polynomial rings, as the tensor product is not commutative.

After the technical preparations we prove Theorem 2.1.

Proof of Theorem 2.1. Suppose first that the mean field functional F satisfies addition-
ally (4.5) and the initial value of the dynamics is such that m0/m∞ belongs to A+,
which is the standard algebra defined in Definition 4.6. According to Proposition 4.8,
the measure mt belongs to A+ uniformly in t, for every T > 0. Since we have that
z 7→ m̂t(z)/m∞(z) is C4 with

sup
z∈R2d

∣∣∣∇ log
m̂t

m∞
(z)
∣∣∣ ≤MF

mmW2(mt,m∞)
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and

max
k=2,3,4

sup
z∈R2d

∣∣∣∇k log
m̂t

m∞
(z)
∣∣∣ ≤M,

for some constant M , the alternative relative density ηt(z) := mt(z)/m̂t(z) is C4 in z and
there exists a constant MT such that

ηt(z) +
1

ηt(z)
+

4∑
k=1

∣∣∇kηt(z)∣∣ ≤ exp
(
MT (1 + |z|)

)
(4.10)

for every (t, z) ∈ [0, T ] × R2d. The constant MT may change from line to line in the
following.

In the following we will adopt the abstract notations introduced by Villani in his
seminal work on the hypocoercivity [40]. Define Ht = L2(m̂t), At = ∇v and Bt =

v · ∇x −DmF (mt, x) · ∇v. The adjoint of At in Ht is therefore A∗t = −∇v + v, while Bt is
antisymmetric: B∗t = −Bt. Define the commutator Ct = [At, Bt] = AtBt − BtAt = ∇x.
Finally define Lt = A∗tAt + Bt and ut = log ηt. The Fokker–Planck equation (2.12) now
reads

∂tmt

m̂t
= −Ltηt = −(A∗tAt +Bt)ηt. (4.11)

Adding anisotropic Fisher. Let a, b, c be positive reals to be determined. We define the
hypocoercive Lyapunov functional

E(m) = F(m) + a

∫ ∣∣∣∇v log
m

m̂
(z)
∣∣∣2m(dz)

+ 2b

∫
∇v log

m

m̂
(z) · ∇x log

m

m̂
(z)m(dz) + c

∫ ∣∣∣∇x log
m

m̂
(z)
∣∣∣2m(dz), (4.12)

where F(m) = F (m) + 1
2

∫
|v|2m+H(m) is the free energy. We also denote the sum of

the last three terms in (4.12) by Ia,b,c(mt|m̂t), so that

E(m) = F(m) + Ia,b,c(mt|m̂t).

Thanks to Proposition 4.8 and in particular the bound (4.10), we can show that the
quantity E(mt) is well defined for every t ≥ 0 and is continuous in t. We will show in
the following that t 7→ E(mt) is in fact absolutely continuous and calculate its almost
everywhere derivative. To this end, for every t > 0 and every h ≥ −t, we define

E(mt+h)− E(mt) =
(
F(mt+h)−F(mt)

)
+
(
Ia,b,c(mt+h|m̂t+h)− Ia,b,c(mt|m̂t+h)

)
+
(
Ia,b,c(mt|m̂t+h)− Ia,b,c(mt|m̂t)

)
=: ∆1 + ∆2 + ∆3.

Contributions from ∆1 and ∆2. We first calculate the contributions from ∆1. Using the
Fokker–Planck equation (2.12) and the bounds (4.10), one has |∆1| ≤MTh for every t, h
such that t and t+ h belong to [0, T ]; moreover, by the dominated convergence theorem
one has for almost every t > 0,

lim
h→0

∆1

h
=
dF(mt)

dt
= −

∫ ∣∣∣∇v log
mt

m̂t
(z)
∣∣∣2mt(z)dz = −

∫
|Atut|2mt,
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where the right hand side is continuous in t. The above inequality then holds for every
t > 0. Define the 4× 4 matrix

K1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

and denote the Hilbertian norm by ‖ · ‖ = ‖ · ‖L2(mt). Introduce the four-dimensional
vector

Yt =
(
‖Atut‖,

∥∥A2
tut
∥∥, ‖Ctut‖, ‖CtAtut‖)T. (4.13)

Then we have for almost every t > 0, limh→0 ∆1/h = −Y T
t K1Yt.

Next calculate the contributions from ∆2. Arguing as we did for ∆1, again we have
|∆2| ≤MTh. Applying the dominated convergence theorem and compute as in the proofs
of [40, Lemma 32 and Theorem 18], we obtain that for almost every t > 0, the limit
limh→0 ∆2/h exists and is upper bounded by −Y T

t K2Yt, where

K2 :=


2a− 2MF

mxb −2b −2a 0

0 2a −2MF
mxc −4b

0 0 2b 0

0 0 0 2c

 .

Contributions from ∆3. Now we calculate the last term ∆3:=Ia,b,c(mt|m̂t+h)−Ia,b,c(mt|m̂t).
Note that ∇v log m̂t(z) = −v and, by the W2-Lipschitz continuity of m 7→ DmF (m,x), we
have∣∣∇x log m̂t+h(z)−∇x log m̂t(z)

∣∣ =
∣∣DmF

(
mx
t+h, x

)
−DmF

(
mx
t , x
)∣∣

≤MF
mmW2

(
mx
t+h,m

x
t

)
.

So for each z ∈ R2d, we know that ∇ log m̂t(z) is continuous in t, and is absolutely
continuous once t 7→ mx

t is absolutely continuous with respect to the W2 distance in the
sense of [2, Definition 1.1.1]. Let us show the latter. Integrating the speed component in
the Fokker–Planck equation (2.12), we obtain

∂tm
x
t +∇x ·

(
vxtm

x
t

)
= 0, (4.14)

where

vxt (x) :=

∫
vmt(x, v)dv∫
mt(x, v)dv

=

∫
∇v log mt

m̂t
(x, v)mt(x, v)dv∫

mt(x, v)dv

is the average speed at the spatial point x. The L2 norm of the vector field in the
continuity equation (4.14) satisfies

‖vxt ‖L2(mx
t ) =

(∫ ∣∣∣∣∣
∫
∇v log mt

m̂t
(x, v)mt(x, v)dv∫

mt(x, v)dv

∣∣∣∣∣
2

mx
t (x)dx

)1/2

≤
(∫ ∣∣∣∇v log

mt

m̂t
(z)
∣∣∣2mt(dz)

)1/2

= ‖Atut‖ ≤MT ,

where the first inequality is due to Cauchy–Schwarz. Applying [2, Proposition 8.3.1] to
the flow t 7→ mx

t and its continuity equation (4.14), and using [2, Theorem 1.1.2], we
obtain

W2

(
mx
t+h,m

x
t

)
≤
∫ t+h

t

‖Asus‖ds ≤MTh
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for every t, h such that t and t + h belong to [0, T ]. So the mapping t 7→ ∇ log m̂t(z) is
absolutely continuous with almost everywhere derivatives satisfying

∂t∇v log m̂t(z) = 0,

|∂t∇x log m̂t(z)| ≤MF
mm‖Atut‖ ≤MT .

Then we obtain |∆3| ≤ MTh. Moreover, by the dominated convergence theorem, we
have for almost every t > 0,

lim
h→0

|∆3|
|h|
≤ 2MF

mm

∫ (
|Atut(z)|, |Ctut(z)|

)(a b

b c

)(
0

‖Atut‖

)
mt(dz)

≤ 2MF
mm(b‖Atut‖‖Atut‖+ c‖Atut‖‖Ctut‖) = Y T

t K3Yt

by applying Cauchy–Schwarz again, where

K3 := 2MF
mm


b 0 c 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Hypocoercivity. Our previous bounds on ∆k, k = 1, 2, 3 establish that t 7→ E(mt) is
absolutely continuous (locally Lipschitz, in fact) with its almost everywhere derivative
satisfying d

dtE(mt) ≤ −Y T
t KYt, where K is defined by K1 +K2 −K3 and is equal to

1 + 2MF
mma− 2

(
MF
mx +MF

mm

)
b −2b −2a− 2MF

mmc 0

0 2a −2MF
mxc −4b

0 0 2b 0

0 0 0 2c

 .

As in the end of the proof of [40, Theorem 18], we can pick constants a, b, c > 0,
depending only on MF

mx and MF
mm, such that ac > b2 and the matrix K is a positive-

definite. Let α be the smallest eigenvalue of K. Then we have

dE(mt)

dt
≤ −α

(
‖Atut‖2 + ‖Ctut‖2 + ‖A2

tut‖2 + ‖CtAtut‖2
)

≤ −α
(
‖Atut‖2 + ‖Ctut‖2

)
= −αI(mt|m̂t).

Hence for every t, s such that t ≥ s ≥ 0,

E(mt) ≤ E(ms)− α
∫ t

s

I(mu|m̂u)du. (4.15)

Approximation. We now show that the inequality (4.15) holds without additional assump-
tions on the mean field functional F and the initial value m0.

First, suppose still that F satisfies (4.5) but no longer suppose m0 is such that
m0/m∞ ∈ A+. The initial value m0 belongs to P2(Rd) and both H(m0) and I(m0) are
finite, so thanks to Proposition 4.7, we can pick a sequence of measures

(
m′n,0

)
n∈N, each

of which belongs to A+, such that

lim
n→∞

W2

(
m′n,0,m0

)
+
∣∣H(m′n,0)−H(m0)

∣∣+
∣∣I(m′n,0)− I(m0)

∣∣ = 0.

As proved above, the inequality (4.15) holds for the flow
(
m′n,t

)
t≥0

, that is,

E
(
m′n,t

)
≤ E

(
m′n,0

)
− α

∫ t

0

I
(
m′n,s

∣∣m̂′n,s)ds.
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By the continuity with respect to the initial value of the SDE system (2.10), we have also
m′n,t → mt in the weak topology of P2. We recall in Lemma A.1 that both the entropy and
the Fisher information are lower semicontinuous with respect to the weak topology of
P2. Taking the lower limit on both sides of the inequality above, we obtain (4.15) with
s = 0 for the original flow (mt)t≥0.

Second, we no longer require F to satisfy (4.5) and set Fk(m) = F (m ? ρk) for a
sequence of smooth and symmetric mollifiers (ρk)k∈N in Rd with supp ρk ⊂ B(0, 1/k).
The linear derivative of the regularized mean field functional reads δFk

δm (m, ·) = δF
δm (m ?

ρk, ·)?ρk, and its intrinsic derivative readsDmFk(m, ·) = DmF (m?ρk, ·)?ρk. Consequently,

|DmFk(m′, x′)−DmF (m,x)| ≤MF
mmW2(m′,m) +MF

mx|x′ − x|

+
MF
mx +MF

mm

k
. (4.16)

Moreover, ∇DmFk(m, ·) = ∇DmF (m ? ρk, ·) ? ρk and

∇kDmFk(m, ·) = DmF (m ? ρk, ·) ?∇kρk = ∇DmF (m ? ρk, ·) ?∇k−1ρk

is continuous for k ≥ 0 and bounded for k ≥ 1. In particular Fk satisfies (4.5). Define
Ek(m) = Fk(m) + 1

2

∫
|v|2m+H(m) + Ia,b,c(m|m̂) and here m̂ should be understood as the

Gibbs-type measure defined with Fk instead of F . Let (m′′k,t)t≥0 be the flow of measures
driven by Fk with the initial value m′′k,0 = m0. Our previous result yields for every t ≥ 0,

Ek
(
m′′k,t

)
≤ Ek(m0)− α

∫ t

0

I
(
m′′k,s

∣∣m̂′′k,s)ds,
where m̂′′k,s is the probability measure proportional to

exp

(
−δFk
δm

(
m′′k,s, x

)
− 1

2
|v|2
)
dxdv.

From the bound (4.16) we deduce thatm′′k,t → mt in P2 for every t ≥ 0 by the synchronous
coupling result in Lemma 5.1. So taking the lower limit on both sides of the previous
inequality, we obtain the inequality (4.15) with s = 0 holds for general initial values and
general mean field functionals. In particular, for every t ≥ 0, the measure mt has finite
entropy and finite Fisher information. Then we apply the same argument to the flow
with the initial value ms and obtain the inequality (4.15) for general s ≥ 0.

Conclusion. Define the matrix

S =

(
a b

b c

)
and denote by |S| its largest eigenvalue. The Fisher information satisfies for every t ≥ 0,

I(mt|m̂t) =
1

2
I(mt|m̂t) +

1

2
I(mt|m̂t)

≥ 2ρH(mt|m̂t) +
1

2
I(mt|m̂t)

≥ 2ρ
(
F(mt)−F(m∞)

)
+

1

2|S|
Ia,b,c(mt|m̂t)

≥
(

2ρ ∧ 1

2|S|

)(
E(mt)− E(m∞)

)
,

where on the second line we applied the uniform LSI (2.7), with ρ defined by (2.6), and on
the third line we used Lemma 4.2, m∞ = m̂∞ and S � λ2. Applying Grönwall’s lemma2

to (4.15), we obtain the desired contractivity (2.20) with κ := α
(
2ρ ∧ (2|S|)−1

)
.

2The mapping t 7→ E(mt) is lower semicontinuous by Lemma A.1 and non-increasing by the inequality (4.15).
So it is càdlàg. It then suffices to convolute the mapping t 7→ E(mt) by a sequence of mollifiers compactly
supported in (0, 1), apply the classical Grönwall’s lemma and take the limit.
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Remark 4.2. Our Theorem 2.1 can be compared to [40, Theorem 56], where kinetic mean
field Langevin dynamics with two-body interaction are studied and O(t−∞) entropic con-
vergence to equilibrium is shown, under the assumption that the mean field dependence
is small. This restriction is lifted by our method which leverages the functional convexity.

Remark 4.3. The regularized energy functional Fk is such that x 7→ DmFk(m,x) has
bounded derivatives of every order. However m 7→ DmFk(m,x) remains only Lipschitz
continuous and we are not aware of any approximation argument that allows us to obtain
differentiability in the measure argument. Consequently we use still the result from [2]
to treat this low regularity.

4.3 Particle system

In this section we study the system of particles described by the linear Fokker–
Planck equation (2.13) and the SDE (2.11). Note that since the dynamics is linear, its
wellposedness is classical and we omit its proof.

We first show that for our model we can construct hypocoercive functionals whose
constants are independent of the number of particles.

Lemma 4.9 (Uniform-in-N hypocoercivity). Assume F satisfies (2.2) and there exists
a measure mN

∞ satisfying (2.19) and having finite exponential moments. Let t 7→ mN
t

be a solution to the N -particle Fokker–Planck equation (2.13) in C
(
[0, T ];P2(R2dN )

)
whose initial value mN

0 has finite entropy and finite Fisher information. Then there exist
constants a, b, c, α > 0 depending only on MF

mx and MF
mm such that ac > b2 and the

functional

EN (mN ) := FN (mN ) + Ia,b,c
(
mN

∣∣mN
∞
)

:= FN (mN ) +

N∑
i=1

(
a

∫ ∣∣∇vi log hN (z)
∣∣2mN (dz)

+ 2b

∫
∇vi log hN (z) · ∇xi log hN (z)mN (dz)

+ c

∫ ∣∣∇xi log hN (z)
∣∣2mN (dz)

)
, (4.17)

where hN := mN
/
mN
∞, is finite on mN

t for t > 0; moreover, the mapping t 7→ EN
(
mN
t

)
satisfies

EN
(
mN
t

)
≤ EN

(
mN
s

)
− α

∫ t

s

I
(
mN
u

∣∣mN
∞
)
du (4.18)

for every t, s such that t ≥ s ≥ 0.

Remark 4.4. The constants a, b, c are possibly different from those appearing in the
proof of Theorem 2.1.

Proof. We first show that the condition (2.2) implies a bound on the second-order
derivatives of x 7→ UN (x) := NF (µx). The first-order derivatives satisfy∣∣∇iUN (x)−∇iUN (x′)

∣∣ =
∣∣DmF (µx, x

i)−DmF (µx′ , x
′ i)
∣∣

≤MF
mmW2(µx, µx′) +MF

mx|xi − x′ i|.

Summing over i, we obtain for every ε > 0,∣∣∇UN (x)−∇UN (x′)
∣∣2 ≤ (1 + ε)

(
MF
mm

)2
NW 2

2 (µx, µx′) + (1 + ε−1)
(
MF
mx

)2|x− x′|2

≤
(

(1 + ε)
(
MF
mm

)2
+ (1 + ε−1)

(
MF
mx

)2)|x− x′|2.
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Optimizing ε yields
∣∣∇UN (x)−∇UN (x′)

∣∣ ≤ (MF
mm +MF

mx

)
|x− x′|. Define∥∥∇2UN

∥∥
∞ =

∥∥∇2UN
∥∥

op,∞ = ess sup
x∈RdN

sup
x′∈RdN :|x′|2=1

∣∣∇2UN (x)x′
∣∣
2
.

From the Lipschitz bound we obtain∥∥∇2UN
∥∥

op,∞ ≤M
F
mx +MF

mm. (4.19)

Now suppose there exist a constant M such that UN satisfies

x 7→ UN (x) is C4 and
4∑
k=3

∥∥∇kUN∥∥∞ ≤M, (4.20)

and that hN0 = mN
0

/
mN
∞ satisfies

hN0 (z) +
1

hN0 (z)
+

4∑
k=1

∣∣∇khNt (z)
∣∣ ≤M (4.21)

for every z ∈ R2dN . We apply Proposition 4.8 to show that under our assumptions, there
exists a constant MT such that

hNt (z) +
1

hNt (z)
+

4∑
k=1

∣∣∇khNt (z)
∣∣ ≤ exp

(
MT (1 + |z|)

)
(4.22)

for every (t, z) ∈ [0, T ]×R2dN (in fact, z 7→ hNt (z) remains lower and upper bounded and
its up-to-fourth-order derivatives grow at most polynomially).

We denote uNt = log hNt . In view of the regularity bound (4.22), we have

−
dFN

(
mN
t

)
dt

=

N∑
i=1

∫
|∇viuNt |2mN

t ,

− d

dt

∫ ∣∣∇viuNt ∣∣2mN
t = 2

∫ (
∇xiuNt · ∇viuNt +

∣∣∇2
viu

N
t

∣∣2
+∇viuNt · ∇viuNt

)
mN
t ,

− d

dt

∫
∇viuNt · ∇xiuNt m

N
t =

∫ (
−

N∑
j=1

∇viuNt ∇2
ijU

N∇vjuNt +
∣∣∇xiuNt

∣∣2
+ 2∇2

viu
N
t · ∇vi∇xiuNt +∇viuNt · ∇xiuNt

)
mN
t ,

− d

dt

∫
∇xiuNt · ∇xiuNt m

N
t =

∫ (
−2

N∑
j=1

∇xiuNt ∇2
ijU

N∇vj∇vjuNt

+ 2
∣∣∇xi∇viuNt

∣∣2)mN
t ,

as is computed in [40]. Denote the Hilbertian norm by ‖·‖ = ‖·‖L2(mN
t ) and define the

four-dimensional vector

Y Nt =
(∥∥∇vu

N
t

∥∥,∥∥∇2
vu

N
t

∥∥,∥∥∇xu
N
t

∥∥,∥∥∇x∇vu
N
t

∥∥)T. (4.23)

By Cauchy–Schwarz we have − d
dtE

N
(
mN
t

)
≥ (Y Nt )TKY Nt where

K :=


1 + 2a− 2

∥∥∇2UN
∥∥

op,∞b −2b −2a 0

2a −2
∥∥∇2UN

∥∥
op,∞c −4b

2b 0

2c

 ,
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where ‖∇2UN‖op,∞ is bounded by (4.19). We then apply the same argument as in the
proof of Theorem 2.1 to pick a, b, c such that ac > b2 and K is positive-definite with its
smallest eigenvalue α > 0. Then,

−
dEN

(
mN
t

)
dt

≥ (Y Nt )TKY Nt ≥ αI
(
mN
t

∣∣mN
∞
)
,

from which the desired inequality (4.18) follows.
We then show the inequality (4.18) holds for general mean field functional F and

initial value mN
0 . First, suppose still that UN satisfies additionally the bound (4.20) but no

longer suppose mN
0 satisfies additionally (4.21). As mN

0 has finite second moment, finite
entropy and finite Fisher information, we can find a sequence of measures (m′Nn,0)n∈N,
each of which satisfies the bound (4.21), such that

lim
n→+∞

W2

(
m′Nn,0,m

N
0

)
+
∣∣H(m′Nn,0)−H(m′N0 )∣∣+

∣∣I(m′Nn,0)− I(m′N0 )∣∣ = 0,

by the procedure in the proof of Proposition 4.7. We have the convergence m′Nn,t → mN
t

in P2. So taking the lower limit on both sides of

EN
(
m′Nn,t

)
− EN

(
m′Nn,0

)
+ α

∫ t

0

I
(
m′Nn,s

∣∣mN
∞
)
ds ≤ 0

yields (4.18) for s = 0, thanks to the P2-continuity of F and the P2-lower-semicontinuity
of entropy and Fisher information, proved in Lemma A.1.

Second, we no longer suppose UN satisfies the bound (4.20) and set

UNk = UN ? ρk

for a sequence of smooth mollifiers (ρk)k∈N in RdN . Then UNk is C4 and satisfies its
second and fourth-order derivatives ∇νUNk = ∇2UN ?∇ν−2ρk with ν = 3, 4 are bounded
as
∥∥∇2UN

∥∥
∞ ≤M

F
mx +MF

mm. Moreover, from the bound (4.19) on ∇2UN we deduce∥∥∇(UNk − UN )
∥∥
∞ → 0 (4.24)

and
∥∥∇2UNk

∥∥
∞ ≤

∥∥∇2UN
∥∥
∞ ≤ MF

mx + MF
mm. Let

(
m′′Nk,t

)
t≥0

be the flow of measures

driven by the regularized potential UNk with the initial value m′′Nk,0 = mN
0 and denote its

invariant measure by m′′Nk,∞. That is to say, m′′Nk,∞ is the probability measure proportional

to exp
(
−UNk (x)− 1

2 |v|
2
)
dxdv. Thanks to the bound (4.24), we can apply the synchronous

coupling result in Lemma 5.1 and obtain m′′Nk,t → mN
t in P2 for every t ≥ 0. The result

obtained in the previous paragraph writes

H
(
m′′Nk,t

∣∣m′′Nk,∞)+ Ia,b,c
(
m′′Nk,t

∣∣m′′Nk,∞)−H(mN
0

∣∣m′′Nk,∞)− Ia,b,c(mN
0

∣∣m′′Nk,∞)
+ α

∫ t

0

I
(
m′′Nk,s

∣∣m′′Nk,∞)ds ≤ 0

for every t ≥ 0 and we take the lower limit on both sides to obtain (4.18) with s = 0 for
general initial values and general mean field functional. In particular, this implies for
every t ≥ 0, mN

t has finite entropy and finite Fisher information. Then we apply the same
argument to the flow with mN

s as the initial value and obtain (4.18) for general s ≥ 0.

Remark 4.5. If we additionally assume a uniform-in-N LSI for mN
∞, then we can directly

establish
dEN

(
mN
t

)
dt

≤ −κEN
(
mN
t

)
,
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for a constant κ > 0 independent of N . This approach has been explored in a number
of previous works. We do not impose such an assumption or sufficient conditions for it,
as they often requires the mean field interaction to be small enough or (semi-)convex
enough, excluding the application to neural networks in Section 3.

We then give the proof of Theorem 2.2. The method of proof is similar to [7, Theorem
2.3] and we only need to take into account of the additional kinetic terms. We give a
complete proof only for the sake of self-containedness.

Proof of Theorem 2.2. We pick the positive constants a, b, c, α depending only on MF
mx

and MF
mm such that ac > b2 and (4.18) holds for every t ≥ 0, according to Lemma 4.9.

Then, as in the proof of [7, Theorem 2.3], we will establish a lower bound of the relative
Fisher information It := I

(
mN
t

∣∣mN
∞
)

in order to obtain the desired result.

Regularity of conditional distribution. By local hypoelliptic positivity (see e.g. [40,
Theorem A.19 and Corollary A.21]), we know that for every t > 0 and every z ∈ R2dN ,
mN
t (z) > 0. Let i ∈ {1, . . . , N}. Define the marginal density mN,−i

t (z−i) =
∫
mN
t (z)dzi,

which is strictly positive by the local positivity of mN
t and is lower semicontinuous by

Fatou’s lemma. By the Fubini theorem, we have
∫
mN,−i
t (z−i)dz−i = 1. Together with the

lower semicontinuity, we obtain that mN,−i
t (z−i) is finite everywhere. We are therefore

able to define the conditional probability density

m
N,i|−i
t (zi|z−i) =

mN
t (z)

mN,−i
t (z−i)

=
mN
t (z)∫

mN
t (z)dzi

,

which is weakly differentiable in zi and strictly positive everywhere. We can also define
the conditional density mN,i|−i

∞ for the invariant measure mN
∞, and the regularity follows

directly from its explicit expression.

Decomposing Fisher componentwise. Using the conditional distributions, we can decom-
pose the relative Fisher information as

It =

∫ ∣∣∣∣∇ log
mN
t (z)

mN
∞(z)

∣∣∣∣2mN
t (dz) = E

[∣∣∣∣∇ log
mN
t (Zt)

mN
∞(Zt)

∣∣∣∣2
]

=

N∑
i=1

E

[∣∣∣∣∇zi log
m
N,i|−i
t

(
Zit
∣∣Z−it )mN,−i

t

(
Z−it

)
mN
∞(Zt)

∣∣∣∣2
]

=

N∑
i=1

E

[∣∣∣∣∇zi log
m
N,i|−i
t

(
Zit
∣∣Z−it )

mN
∞(Zt)

∣∣∣∣2
]

=

N∑
i=1

E

[∣∣∣∇zi logm
N,i|−i
t

(
Zit
∣∣Z−it )+DmF

(
µXt

, Xi
t

)
+ V it

∣∣∣2].
Change of empirical measure and componentwise LSI. We replace the empirical measure
µx in DmF by µx−i . Define the difference δi1(x; y) = DmF (µx, y) − DmF (µx−i , y) and
denote by µ̂x−i the probability on R2d such that

µ̂x−i(dxdv) ∝ exp

(
− δF
δm

(µx−i , x)− 1

2
|v|2
)
dxdv.
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For every ε ∈ (0, 1), the Fisher information satisfies

It =

N∑
i=1

E

[∣∣∣∇xi logm
N,i|−i
t

(
Zit
∣∣Z−it )+DmF

(
µX−i

t
, Xi

t

)
+ V it + δi1

(
Xt;X

i
t

)∣∣∣2]

≥
N∑
i=1

E

(1− ε)
∣∣∣∇xi logm

N,i|−i
t

(
Xi
t

∣∣X−it )+DmF
(
µX−i

t
, Xi

t

)
+ V it

∣∣∣2
− (ε−1 − 1)

∣∣δi1(Xt;X
i
t)
∣∣2


= (1− ε)
N∑
i=1

E
[
I
(
m
N,i|−i
t

(
·
∣∣Z−it )∣∣∣µ̂X−i

t

)]
− (ε−1 − 1)

N∑
i=1

E
[∣∣δi1(Xt;X

i
t

)∣∣2],
where we used the elementary inequality (a+ b)2 ≥ (1− ε)|a|2 − (ε−1 − 1)|b|2. Define the
first error

∆1 :=

N∑
i=1

E
[∣∣δi1(Xt;X

i
t

)∣∣2] :=

N∑
i=1

E
[∣∣DmF

(
µXt

, Xi
t

)
−DmF

(
µX−i

t
, Xi

t

)∣∣2]. (4.25)

The previous inequality writes

It ≥ (1− ε)
N∑
i=1

E
[
I
(
m
N,i|−i
t

(
·
∣∣Z−it )∣∣∣µ̂X−i

t

)]
− (ε−1 − 1)∆1. (4.26)

We apply the uniform ρ-log-Sobolev inequality (2.7) for µ̂Xi
t

with ρ defined by (2.6) and
obtain

1

4ρ
I
(
m
N,i|−i
t

(
·
∣∣Z−it )∣∣∣µ̂X−i

t

)
≥ H

(
m
N,i|−i
t

(
·
∣∣Z−it )∣∣∣µ̂X−i

t

)
=

∫ (
logm

N,i|−i
t

(
xi
∣∣Z−it )+

δF

δm

(
µX−i

t
, xi
)

+
1

2
|vi|2

)
m
N,i|−i
t

(
dzi
∣∣Z−it )

+ logZ
(
µ̂X−i

t

)
,

where the last quantity is the normalization factor

Z
(
µ̂X−i

t

)
:=

∫
exp

(
− δF
δm

(
µX−i

t
, x
)
− 1

2
|v|2
)
dxdv.

Then we apply Jensen’s inequality to logZ(µ̂x−i) to obtain

logZ(µ̂X−i
t

) ≥ −
∫ (

δF

δm

(
µX−i

t
, xi
)

+
1

2
|vi|2

)
m∞(dzi)−

∫
m∞(zi) logm∞(zi)dzi.

Chaining the previous two inequalities and summing over i, we have

1

4ρ

N∑
i=1

I
(
m
N,i|−i
t

(
·
∣∣Z−it )∣∣∣µ̂X−i

t

)
≥

N∑
i=1

[∫ (
δF

δm
(µX−i

t
, xi) +

1

2
|vi|2

)
(
m
N,i|−i
t

(
dzi
∣∣Z−it )−m∞(dzi)

)
+H

(
m
N,i|−i
t

(
·
∣∣Z−it ))−H(m∞)

]
. (4.27)

Another change of empirical measure. We are going to replace µx−i by µx in (4.27).
Define δi2(x; y) := δF

δm (µx−i , y)− δF
δm (µx, y) and the second error

∆2 :=

N∑
i=1

∫
δi2(x;xi)mN

t (dz)−
N∑
i=1

∫∫
δi2(x;x′)m∞(dz′)mN

t (dz). (4.28)
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Taking expectations on both sides of (4.27), we obtain

1

4ρ

N∑
i=1

E
[
I
(
m
N,i|−i
t

(
·
∣∣Z−it )∣∣∣µ̂X−i

t

)]
≥ N E

[∫ (
δF

δm
(µXt , x) +

1

2
|v|2
)

(µZt −m∞)(dz)

]
+

N∑
i=1

E
[
H
(
m
N,i|−i
t

(
·
∣∣Z−it ))]

−NH(m∞) + ∆2. (4.29)

Thanks to the convexity of F , the first term satisfies the tangent inequality

N E

[∫ (
δF

δm
(µXt

, x) +
1

2
|v|2
)

(µZt
−m∞)(dz)

]
≥ N E

[
F
(
µXt

)
− F

(
mx
∞
)]

+
1

2

∫
|v|2mN

t (dz)− N

2

∫
|v2|m∞(dz)

= FN
(
mN
t

)
−NF (m∞) +

1

2

∫
|v|2mN

t (dz)− N

2

∫
|v2|m∞(dz). (4.30)

For the second term we apply the information inequality (4.3) to obtain

N∑
i=1

E−i
[
H
(
m
N,i|−i
t

(
·
∣∣Z−it ))] ≥ H(mN

t

)
.

Hence,

N∑
i=1

E
[
I
(
m
N,i|−i
t

(
·
∣∣Z−it )∣∣∣µ̂X−i

t

)]
≥ 4ρ

(
FN
(
mN
t

)
−NF(m∞) + ∆2

)

by the definition of free energies F(m) = F (m)+H(m)+ 1
2

∫
|v|2m, FN (mN ) = FN (mN )+

H(mN ) + 1
2

∫
|v|2mN . Using (4.26), we obtain

It = I
(
mN
t

∣∣mN
∞
)
≥ 4ρ(1− ε)

(
FN
(
mN
t

)
−NF(m∞) + ∆2

)
− (ε−1 − 1)∆1. (4.31)

Bounding the errors ∆1, ∆2. The transport plan between µx and µx−i

πi =
1

N

∑
j 6=i

δ(xj ,xj) +
1

N(N − 1)

∑
j 6=i

δ(xj ,xi) (4.32)

gives the bound W1(µx, µx−i) ≤ 1
N(N−1)

∑
j 6=i |xj − xi|. We use this transport plan to

bound the errors ∆1, ∆2.

Let us treat the first error ∆1. Since m 7→ DmF (m,x) is MF
mm-Lipschitz continuous

in W2 metric, we have ∣∣δi1(x; y)
∣∣ ≤MF

mmW2(µx, µx−i).
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Under the L2-optimal transport plan Law
(
(Zit)

N
i=1, (Z̃

i
∞)Ni=1

)
∈ Π(mN

t ,m
⊗N
∞ ) we have

∆1 =

N∑
i=1

E
[∣∣δi1(Xt;X

i
t)
∣∣2] ≤ (MF

mm

)2 N∑
i=1

E
[
W 2

1

(
µXt

, µX−i
t

)]
≤
(
MF
mm

)2
N(N − 1)

E

[ ∑
1≤i,j≤N
i 6=j

∣∣Xj
t −Xi

t

∣∣2]

≤
3
(
MF
mm

)2
N(N − 1)

E

[ ∑
1≤i,j≤N
i 6=j

(∣∣Xi
t − X̃i

∞
∣∣2 +

∣∣X̃i
∞ − X̃j

∞
∣∣2 +

∣∣Xj
t − X̃j

∞
∣∣2)]

≤
3
(
MF
mm

)2
N(N − 1)

(
2(N − 1)E

[ N∑
i=1

∣∣Xi
t − X̃i

∞
∣∣2]+N(N − 1)E

[∣∣X̃1
∞ − X̃2

∞
∣∣2]).

The first termE
[∑N

i=1 |Xi
t−X̃i

∞|2
]

is bounded by the Wasserstein distanceW 2
2

(
mN
t ,m

⊗N
∞
)
,

while the second E
[
|X̃1
∞ − X̃2

∞|2
]

equals 2 Varmx
∞. Hence the first error satisfies the

bound

∆1 ≤ 6
(
MF
mm

)2( 1

N
W 2

2

(
mN
t ,m

⊗N
∞
)

+ Varm∞

)
. (4.33)

Now treat the second error ∆2. The Lipschitz constant of y 7→ δi2(x; y) = δF
δm (µx−i , y)−

δF
δm (µx, y) is controlled by∣∣∇yδi2(x; y)

∣∣ = |DmF (µx, y)−DmF (µx−i , y)| ≤MF
mmW1(µx, µx−i).

Hence
∣∣δi2(x; y) − δi2(x; y′)

∣∣ ≤ MF
mmW1(µx, µx−i)|y − y′|. Use Fubini’s theorem to first

integrate z′ in the definition of the second error (4.28) and let Z̃ ′∞ be independent from
Zt. We obtain

|∆2| ≤
N∑
i=1

∫ (∫ ∣∣δi2(x;xi)− δi2(x;x′)
∣∣m∞(dz′)

)
mN
t (dz)

≤
N∑
i=1

∫∫
MF
mmW1(µx, µx−i)|x′ − xi|m∞(dz′)mN

t (dz)

≤
N∑
i=1

∫∫
MF
mm

N(N − 1)

N∑
j=1, j 6=i

|xi − xj ||x′ − xi|m∞(dz′)mN
t (dz)

≤ MF
mm

2N(N − 1)

N∑
i=1

∫∫ N∑
j=1, j 6=i

(
|xi − xj |2 + |x′ − xi|2

)
m∞(dz′)mN

t (dz)

≤ MF
mm

2N(N − 1)

( N∑
i,j=1
i 6=j

E
[∣∣Xi

t −X
j
t

∣∣2]+ (N − 1)

N∑
i=1

E
[∣∣Xi

t − X̃ ′∞
∣∣2]).

Using the same method we used for ∆1, we control the first term by

N∑
i,j=1
i 6=j

E
[∣∣Xi

t −X
j
t

∣∣2] ≤ 6N(N − 1)

(
1

N
W 2

2

(
mN
t ,m

⊗N
∞
)

+ Varmx
∞

)
.

For the second term we work again under the L2-optimal plan Law
(
(Zit)

N
i=1, (Z̃

i
∞)Ni=1

)
∈
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Π(mN
t ,m

⊗N
∞ ) and let Z̃ ′∞ remain independent from the other variables. We have

N∑
i=1

E
[∣∣Xi

t − X̃ ′∞
∣∣2] ≤ 2

N∑
i=1

(
E
[∣∣Xi

t − X̃i
∞
∣∣2]+ E

[∣∣X̃i
∞ − X̃ ′∞

∣∣2])
≤ 2N

(
1

N
W 2

2

(
mN
t ,m

⊗N
∞
)

+ 2 Varmx
∞

)
.

As a result,

|∆2| ≤MF
mm

(
4

N
W 2

2

(
mN
t ,m

⊗N
∞
)

+ 5 Varmx
∞

)
. (4.34)

Conclusion. Inserting the bounds on the errors (4.33) and (4.34) to the lower bound of
Fisher information (4.31), we obtain

I
(
mN
t

∣∣mN
∞
)
≥ 4ρ(1− ε)

(
FN
(
mN
t

)
−NF(m∞)

)
−
(

16ρMF
mm + 6(ε−1 − 1)

(
MF
mm

)2) 1

N
W 2

2

(
mN
t ,m

⊗N
∞
)

−
(

20ρMF
mm + 6(ε−1 − 1)

(
MF
mm

)2)
Varmx

∞.

Thanks to the Poincaré inequality (2.8) for m∞ = m̂∞, its spatial variance satisfies

2ρVarm∞(xi) ≤ Em∞
[
|∇xi|2

]
= 1. (4.35)

So Varmx
∞ =

∑d
i=1 Varm∞(xi) ≤ d/2ρ. Using the T2-transport inequality (2.9) for m⊗N∞

and the entropy sandwich Lemma 4.3 we bound the transport cost by

W 2
2

(
mN
t ,m

⊗N
∞
)
≤ 1

ρ
H
(
mN
t

∣∣m⊗N∞ )
≤ 1

ρ

(
FN
(
mN
t

)
−NF(mt)

)
.

In the end we obtain EN
(
mN
T

)
≤ EN

(
mN
s

)
− α

∫ T
s
Itdt where

It =
1

2
I
(
mN
t

∣∣mN
∞
)

+
1

2
I
(
mN
t

∣∣mN
∞
)

≥ 1

2

[
4(1− ε)ρ− MF

mm

N

(
16 + 6(ε−1 − 1)

MF
mm

ρ

)](
FN
(
mN
t

)
−NF(m∞)

)
+

1

2
I
(
mN
t

∣∣mN
∞
)
− dMF

mm

2ρ

(
10ρ+ 3(ε−1 − 1)MF

mm

)
.

We conclude by applying Grönwall’s lemma, as in the end of the proof of Theorem 2.1.

5 Short-time behaviors and propagation of chaos

Our proof of the main theorem on the uniform-in-time propagation of chaos (The-
orem 2.3) relies on the exponential convergence in Theorems 2.1 and 2.2, where the
initial conditions are required to have finite entropy and finite Fisher information. We
aim to demonstrate in this section that the non-linear kinetic Langevin dynamics exhibits
the same regularization effects in short time as the linear ones, where the contributions
from the non-linearity can be controlled. We will first show the short-time Wasserstein
propagation of chaos using synchronous coupling. Then we adapt the regularization
results for the linear dynamics to our setting and show that for measure initial values of
finite second moment, the entropy and the Fisher information are finite for the flow at
every positive time, where the short-time Wasserstein propagation of chaos also plays a
role. Finally we combine all the estimates obtained to derive Theorem 2.3.
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5.1 Synchronous coupling

We first show a lemma where synchronous coupling is applied to general McKean–
Vlasov diffusions. This lemma is also used to justify the approximation arguments in the
proof of Theorems 2.1 and 2.2.

Lemma 5.1. Let T > 0 and β, β′ : [0, T ] × P2(Rd) × Rd → Rd be measurable and
uniformly Lipschitz continuous in the last two variables and σ be a d × d real matrix.
Suppose the integral

∫ T
0

(|β(t, δ0, 0)|+ |β′(t, δ0, 0)|)dt is finite. Let (Zt)t∈[0,T ], (Z ′t)t∈[0,T ] be
respective solutions to

dZt = β
(
t,Law(Zt), Zt

)
dt+ σdWt,

dZ ′t = β′
(
t,Law(Z ′t), Z

′
t

)
dt+ σdW ′t ,

where W , W ′ are d-dimensional Brownians. If there exist constants Mm, Mz and a
progressively measurable δ : Ω × [0, T ] → R such that for every t ∈ [0, T ], every m,
m′ ∈ P2(Rd) and every x, x′ ∈ Rd,

|β(t,m,Zt)− β′(t,m′, Z ′t)| ≤MmW2(m,m′) +Mz|Zt − Z ′t|+ δt (5.1)

almost surely, then for every t ∈ [0, T ],

W 2
2

(
Law(Zt),Law(Z ′t)

)
≤ e(2Mm+2Mz)t+1W 2

2

(
Law(Z0),Law(Z ′0)

)
+ e2t

∫ t

0

e(2Mm+2Mz)(t−s)E
[
δ2
s

]
ds.

Proof. From the uniformly Lipschitz continuity of b and b′ we have the uniqueness in law
and the existence of strong solution for both diffusions. So we can construct (Zt, Z

′
t)t∈[0,T ]

such that they share the same Brownian motion and satisfy

E
[
|Z0 − Z ′0|2

]
= W 2

2

(
Law(Z0),Law(Z ′0)

)
.

Consequently,

d(Zs − Z ′s) =
[
b
(
s,Law(Zt), Zs

)
− b′

(
s,Law(Z ′s), Z

′
s

)]
dt

and by Itō’s formula,

d|Zs − Z ′s|2 = 2(Zs − Z ′s) ·
[
β
(
s,Law(Zs), Zs

)
− β′

(
s,Law(Z ′s), Z

′
s

)]
ds.

By (5.1) we have∣∣β(s,Law(Zs), Zs
)
− β′

(
s,Law(Zs), Zs

)∣∣ ≤MmW2

(
Law(Zs),Law(Z ′s)

)
+Mz|Zs − Z ′s|+ δs ≤MmE

[
|Zs − Z ′s|2

]1/2
+Mz|Zs − Z ′s|+ δs.

Hence

1

2
d|Zs − Z ′s|2 ≤Mz|Zs − Z ′s|2 +MmE

[
|Zs − Z ′s|2

]1/2|Zs − Z ′s|+ |Zs − Z ′s|δs.
By Cauchy–Schwarz,

d|Zs − Z ′s|2 ≤ (2Mz +Mm + t−1)|Zs − Z ′s|2 +MmE
[
|Zs − Z ′s|2

]
+ tδ2

s .

Taking expectations on both sides and applying Grönwall’s lemma, we obtain

E
[
|Zt − Z ′t|2

]
= e2(Mz+Mm)t+1E

[
|Z0 − Z ′0|2

]
+ t

∫ t

0

e2(Mz+Mm+t−1)(t−s)E
[
δ2
s

]
ds

≤ e2(Mz+Mm)t+1E
[
|Z0 − Z ′0|2

]
+ e2t

∫ t

0

e2(Mz+Mm)(t−s)E
[
δ2
s

]
ds,

from which the desired inequality follows.
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Since the finite-time propagation of chaos does not depend on the gradient structure
of the diffusions, we introduce a more general setting. Let b : P2(R2d)×Rd ×Rd → R be
a mapping that is Lipschitz in space and velocity: there exist positive constants M b

x, M b
v

such that

∀x, x′, v, v′ ∈ Rd, ∀m ∈ P2(R2d),

|b(m,x, v)− b(m,x′, v′)| ≤M b
x|x− x′|+M b

v |v − v′|. (5.2)

We suppose also that the functional derivatives δb
δm ,

δ2b
δm2 exist with the following bounds:

there exist positive constants M b
m, M b

mm such that

∀m ∈ P2(R2d), ∀z, z′ ∈ R2d, |Dmb(m, z, z
′)|op ≤M b

m, (5.3)

and

∀m,m′ ∈ P2(R2d), ∀z ∈ R2d,∣∣∣∣∫∫ [ δ2b

δm2
(m′, z, z′, z′)− δ2b

δm2
(m′, z, z′, z′′)

]
m(dz′)m(dz′′)

∣∣∣∣ ≤M b
mm. (5.4)

We consider the following mean field dynamics:

dXt = Vtdt,

dVt = b
(
Law(Xt, Vt), Xt, Vt

)
dt+

√
2dWt,

(5.5)

and the corresponding particle system:

dXi
t = V it dt,

dV it = b
(
µ(Xt,Vt), X

i
t , V

i
t

)
dt+

√
2dW i

t , where µ(Xt,Vt) =
1

N

N∑
i=1

δ(Xi
t ,V

i
t ),

(5.6)

and i = 1, . . . , N . In both equations Wt, W i
t are standard Brownians and (W i

t )
N
i=1 are

independent from each other. The dynamics (5.5) and (5.6) are well defined globally in
time thanks to the Lipschitz continuity (5.2) and we denote by P and PN the respective
associated semigroups. That is to say, if (Xt, Vt) solves (5.5) and Law(X0, V0) = µ, then
P ∗t µ := Law(Xt, Vt) and (Ptf)(µ) :=

〈
f, (Pt)

∗µ
〉

for bounded measurable f : R2d → R;

if (Xi
t , V

i
t )Ni=1 solves (5.6) and Law(X0,V0) = µN , then

(
PNt
)∗
µN := Law(Xt,Vt) and(

PNt f
N
)
(µN ) :=

〈
fN ,

(
PNt
)∗
µN
〉

for bounded measurable fN : R2dN → R. We also define
the tensor product of the mean field semigroup:

(
P⊗Nt fN

)
(µ) :=

〈
fN , (P ∗t µ)⊗N

〉
.

Using the previous Lemma 5.1 as a building block, we now show the finite-time
propagation of chaos result.

Proposition 5.2 (Finite-time propagation of chaos). Assume b satisfies (5.2) to (5.4) and
let N ≥ 2. Then there exist a positive constant C depending on M b

x, M b
v , M b

m and M b
mm

such that for every m ∈ P2(R2d) and mN ∈ P2(R2dN ), and every T ≥ 0,

W 2
2

((
PNT
)∗
mN , (P ∗Tm)⊗N

)
≤ CeCTW 2

2

(
mN ,m⊗N

)
+ C(eCT − 1)(Varm0 + d). (5.7)

Proof. We apply Lemma 5.1 with

βi(t,mN , z) =
(
vi, b(µ(x,v), x

i, vi)
)T
,

β′ i(t,mN , z) =
(
vi, b(P ∗t m,x

i, vi)
)T
,

δ2
t :=

N∑
i=1

∣∣δit∣∣2 :=

N∑
i=1

∣∣b(µ(Xt,Vt), X
i
t , V

i
t

)
− b
(
P ∗t m,X

i
t , V

i
t

)∣∣2,
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and Mz :=
√

2M b
x ∨

√
2(M b

v)2 + 1, Mm := 0. We then obtain

W 2
2

((
PNt
)∗
mN , (P ∗t m)⊗N

)
≤ e2Mzt+1W 2

2

(
mN

0 ,m
⊗N
0

)
+ e2t

∫ t

0

e2Mz(t−s)E
[
δ2
t

]
ds.

So it remains to bound E[δ2
t ]. By enlarging the underlying probability space, we construct

the random variable Z̃t =
(
X̃′t, Ṽ

′
t

)
∼ (P ∗t m)⊗N such that

N∑
i=1

E
[∣∣Zit − Z̃ ′ it ∣∣2] = W 2

2

((
PNt
)∗
mN , (P ∗t m)⊗N

)
.

This implies in particular

E
[
W 2

2

(
µ(Xt,Vt), µ(X̃′t,Ṽ

′
t)

)]
≤ 1

N
W 2

2

(
mN
t ,m

⊗N
t

)
. (5.8)

For each i, we decompose

δit =
(
b
(
P ∗t m,Z

i
t

)
− b
(
µZ̃′ −i

t
, Zit
))

+
(
b
(
µZ̃′ −i

t
, Zit
)
− b
(
µZ̃′t

, Zit
))

+
(
b
(
µZ̃′t

, Zit
)
− b
(
µZt , Z

i
t

))
=: (I) + (II) + (III).

According to the assumption (2.4) we can apply Lemma B.1 to the first term and obtain

E
[
(I)2
]

= E
[
E
[
(I)2
∣∣Zit]] ≤ (M b

m

)2
Varmt

N − 1
+

M b
mm

4(N − 1)2
.

We then bound the second term by the M b
m-Lipschitz continuity:

E
[
(II)2

]
≤
(
M b
m

)2
E
[
W 2

2

(
µZ̃′ −i

t
, µZ̃′t

)]
≤

(
M b
m

)2
N(N − 1)

∑
j:j 6=i

E
[∣∣Z̃ ′ jt − Z̃ ′ it ∣∣2] =

2
(
M b
m

)2
N

VarP ∗t m.

Finally by (5.8), we have

E
[
(III)2

]
≤ (M b

m)2E
[
W 2

2

(
µZt

, µZ̃′t

)]
≤
(
M b
m

)2
N

W 2
2

((
PNt
)∗
mN , (P ∗t m)⊗N

)
.

Hence

E
[
δ2
t

]
=

N∑
i=1

E
[
|δit|2

]
≤ C

[
1 + Varmt +W 2

2

((
PNt
)∗
mN , (P ∗t m)⊗N

)]
for some constant C = C

(
M b
m,M

b
mm

)
. By Itō’s formula the variance Varmt satisfies

d

dt
Varmt = 2

(
E
[
Ṽ 2
t

]
− E[Ṽt]

2
)

+ 2E
[
X̃t · b(P ∗t m, Z̃t)

]
− 2E[X̃t] · E

[
b(P ∗t m, Z̃t)

]
+ 2d ≤ C ′(Varmt + d)

for some C ′ = C ′
(
M b
z ,M

b
m

)
. Then Grönwall’s lemma yields Varmt ≤ eC

′t Varm0 + (eC
′t−

1)d. Upon redefining the constants, we obtain for every t ≥ 0,

W 2
2

((
PNt
)∗
mN , (P ∗t m)⊗N

)
≤ e2Mzt+1W 2

2

(
mN ,m⊗N

)
+ Ct

∫ t

0

e2Mz(t−s)
[
W 2

2

((
PNs
)∗
mN , (P ∗sm)⊗N

)
+ eCs(Varm0 + d)

]
ds.

We then conclude by applying the integral version of Grönwall’s lemma.
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5.2 From Wasserstein metric to entropy

We study in this section a logarithmic Harnack’s inequality for kinetic McKean–
Vlasov dynamics and the corresponding particle system. This inequality then implies the
regularization from Wasserstein to entropy.

Lemma 5.3 (Log-Harnack inequality for propagation of chaos). Assume b satisfies (5.2)
to (5.4) and let N ≥ 2. Then there exist a positive constant C depending on M b

x, M b
v ,

M b
m and M b

mm such that for every m ∈ P2(R2d) and mN ∈ P2(R2dN ), every measurable
function fN : R2dN → (0,+∞) that is lower bounded away from 0 and upper bounded,
and every T > 0,

(
PNT log fN

)
(mN ) ≤ log

(
P⊗NT fN

)
(m) + C

(
1

(T ∧ 1)3
+ eCT

)
W 2

2

(
mN ,m⊗N

)
+ C(eCT − 1)(Varm+ d). (5.9)

Consequently,

H
((
PNT
)∗
mN

∣∣∣(P ∗Tm)⊗N
)
≤ C

(
1

(T ∧ 1)3
+ eCT

)
W 2

2

(
mN ,m⊗N

)
+ C(eCT − 1)(Varm+ d). (5.10)

Proof. Let us first prove the log-Harnack inequality (5.9) for compactly supported m and
mN .

Constructing a bridge. Fix T > 0 and let (X̃i
t , Ṽ

i
t )Ni=1 be N independent duplicates of the

solution to (5.5) with the initial condition Law(X̃i
0, Ṽ

i
0 ) = m for i = 1, . . . , N . We denote

the N -independent Brownians by W̃ i
t . By enlarging the underlying probability space, we

construct random variables X0,V0 such that

N∑
i=1

E
[∣∣Xi

0 − X̃i
0

∣∣2 +
∣∣V i0 − Ṽ i0 ∣∣2] = W 2

2

(
mN ,m⊗N

)
.

Define for i = 1, . . . , N the stochastic processes

dXi
t = V it dt, (5.11)

dV it =

(
b
(
P ∗t m, X̃

i
t , Ṽ

i
t

)
− V i0 − Ṽ i0

T
+
d

dt

(
t(T − t)

)
vi
)
dt+

√
2dW̃ i

t , (5.12)

where

vi :=
6

T 3

(
−
(
Xi

0 − X̃i
0

)
+
T

2

(
V i0 − Ṽ i0

))
. (5.13)

The difference processes
(
Xi
t − X̃i

t , V
i
t − Ṽ it

)
satisfy

d
(
V it − Ṽ it

)
= −V

i
0 − Ṽ i0
T

dt+ d
(
t(T − t)

)
vi,

d
(
Xi
t − X̃i

t

)
=
t− T
T

(
V i0 − Ṽ i0

)
dt+ t(T − t)vidt,

so that

V it − Ṽ it =
T − t
T

(
V i0 − Ṽ i0

)
+

6t(T − t)
T 3

(
−
(
Xi

0 − X̃i
0

)
+
T

2

(
V i0 − Ṽ i0

))
, (5.14)

Xi
t − X̃i

t = − t(t− T )2

T

(
V i0 − Ṽ i0

)
+
T 3 − 3Tt2 + 2t3

T 3

(
Xi

0 − X̃i
0

)
. (5.15)

In particular Xi
T = X̃i

T and V iT = Ṽ iT .

EJP 29 (2024), paper 17.
Page 34/43

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1079
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform propagation of chaos for kinetic MFL

Change of measure. Define

ξit :=
1√
2

(
b
(
P ∗t m, X̃

i
t , Ṽ

i
t

)
− b
(
µ(Xt,Vt), X

i
t , V

i
t

)
+
Ṽ i0 − V i0

T
+
d

dt

(
t(T − t)

)
vi
)

and δbit := b
(
P ∗t m,Z

i
t

)
− b
(
µZt , Z

i
t

)
. It satisfies

∣∣ξit∣∣ ≤ C∣∣δbit∣∣+ C

(
M b
x +

M b
v

T
+

1

T 2

)(∣∣Xi
0 − X̃i

0

∣∣+ T
∣∣V i0 − Ṽ i0 ∣∣) (5.16)

for some universal constant C. In the following C may change from line to line and
depend on the constants M b

x, M b
v , M b

m and M b
mm. Set W i

· := W̃ i
· +

∫ ·
0
ξitdt and

R· := exp

[
−

N∑
i=1

(∫ ·
0

ξitdW̃
i
t +

1

2

∫ ·
0

∣∣ξis∣∣2dt)]

which is a local martingale. Then (Xi, V i,W i) solves (5.6). Since m, mN are both
compactly supported,

∣∣Xi
0 − X̃i

0

∣∣, ∣∣V i0 − Ṽ i0 ∣∣ are bounded almost surely. The difference in

drift δbit has uniform linear growth in Xt, Vt, and therefore uniform linear growth in X̃t,
Ṽt. We then apply Lemma C.1 in the appendix to obtain that R· is really a martingale. By
Girsanov’s theorem W i

t are independent Brownians under the new probability Q = RP.
Since X0, V0, X̃0, Ṽ0 are independent from the Brownian motions we have

N∑
i=1

EQ
[∣∣Xi

0 − X̃i
0

∣∣2 +
∣∣V i0 − Ṽ i0 ∣∣2] = W 2

2

(
mN ,m⊗N

)
.

Hence for measurable functions fN : R2dN → R that are lower bounded away from 0

and upper bounded, we have(
PNT log fN

)
(mN ) = E

[
RT log fN (XT ,VT )

]
≤ E[RT logRT ] + logE

[
fN (XT ,VT )

]
= E[RT logRT ] + logE

[
fN (X̃T , ṼT )

]
= E[RT logRT ] + log

(
P⊗NT fN

)
(m).

So it remains to bound E[RT logRT ]. We observe

E[RT logRT ] = EQ[logRT ] =
1

2
EQ
[ N∑
i=1

∫ T

0

∣∣ξit∣∣2dt]

≤ CT
(
M b
x +

M b
v

T
+

1

T 2

)2

EQ
[∣∣Xi

0 − X̃i
0

∣∣2 + T 2
∣∣V i0 − Ṽ i0 ∣∣2]+ C EQ

[∫ T

0

N∑
i=1

∣∣δbit∣∣2dt]

≤ C(T ∨ 1)3

(T ∧ 1)3
W 2

2

(
mN ,m⊗N

)
+ C EQ

[∫ T

0

N∑
i=1

∣∣δbit∣∣2dt].
Arguing as in the proof of Proposition 5.2, we have

N∑
i=1

EQ
[∣∣δbit∣∣2] ≤ CeCt(W 2

2

(
mN ,m⊗N

)
+ Varm+ d

)
,

So the log-Harnack inequality (5.9) is proved for compactly supported mN and m.
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Approximation. Now treat general mN , m of finite second moment, but not necessarily
compact supported. Take two sequences (mN

k )k∈N, (mk)k∈N of compactly supported
measures such that mN

k → mN and mk → m in respective topologies of P2. For
continuous fN such that log fN is bounded, we have(

PNt log fN
)(
mN
k

)
→
(
PNt log fN

)
(mN ),

(
P⊗Nt fN

)
(mk)→

(
P⊗Nt fN

)
(m)

by the P2-continuities of
(
PNt
)∗

and P ∗t . So the log-Harnack inequality (5.9) is shown for
every continuous fN which is both lower and upper bounded, and for general mN and m
of finite second moment. For a doubly bounded but not necessarily continuous fN we
take a sequence of continuous and uniformly bounded (fNk )k∈N that converges to fN in
the σ(L∞, L1) topology. We have(

PNt log fNk
)
(mN )→

(
PNt log fN

)
(mN ),

(
P⊗Nt fNk

)
(m)→

(
P⊗Nt fN

)
(m)

since both (PNt )∗mN and P ∗t m are absolutely continuous with respect to the Lebesgue
measure according to Lemma 4.5. So the desired inequality (5.9) is shown in full
generality. Finally, to obtain (5.10) we define another sequence

gNk :=

((
PNT
)∗
mN

(P ∗Tm)⊗N
∧ k
)
∨ 1

k

for k ∈ N. We apply the Harnack’s inequality (5.9) to gNk and take the limit k → +∞.

Using the known results on log-Harnack inequalities we can also obtain the regular-
ization in the beginning of the dynamics.

Proposition 5.4. Assume F satisfies (2.2) and there exist probabilities m∞, mN
∞ sat-

isfying (2.18) and (2.19) respectively and having finite exponential moments. Let m0

(resp. mN
0 ) be the initial value of the mean field dynamics (2.12) (resp. the particle

system dynamics (2.13)) of finite second moment. Then there exist a positive constant C
depending on MF

mm and MF
mx such that for every t ∈ (0, 1],

H(mt|m∞) ≤ C

t3
W 2

2 (m0,m∞) (resp. H
(
mN
t

∣∣mN
∞
)
≤ C

t3
W 2

2

(
mN

0 ,m
N
∞
)
). (5.17)

Proof. Note that mt = P ∗t m0 and mN
t =

(
PNt
)∗
mN

0 where Pt and PNt are the McKean–
Vlasov and the linear semigroup corresponding to the SDEs (2.10) and (2.11), respectively.
We then apply the log-Harnack inequality for McKean–Vlasov diffusions [32, Proposition
5.1] and obtain

H(mt|m∞) ≤ C

t3
W 2

2 (mt,m∞)

for t ∈ (0, 1]. For the particle system we apply the classical log-Harnack inequality (which
corresponds to the case where M b

m and M b
mm are both equal to 0 in our Lemma 5.3, i.e.

no mean field dependence) and obtain

H
(
mN
t

∣∣mN
∞
)
≤ C

t3
W 2

2

(
mN
t ,m

N
∞
)

for t ∈ (0, 1] and it is clear from the computations in Lemma 5.3 that the constant C can
be chosen to depend only on MF

mx and MF
mm.
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5.3 From entropy to Fisher information

We then adapt Hérau’s functional to our setting to obtain the regularization from
entropy to Fisher information.

Proposition 5.5. Assume that F satisfies (2.1) and (2.2), and that there exist proba-
bilities m∞, mN

∞ satisfying (2.18) and (2.19) respectively and having finite exponential
moments. Let m0 (resp. mN

0 ) be the initial value of the mean field dynamics (2.12)
(resp. the particle system dynamics (2.13)) of finite second moment and finite entropy.
Then there exist a positive constant C depending on MF

mm and MF
mx such that for every

t ∈ (0, 1],

I(mt|m̂t) ≤
C

t3
(
F(m0)−F(m∞)

)
(resp. I

(
mN
t

∣∣mN
∞
)
≤ C

t3
H
(
mN

0

∣∣mN
∞
)
). (5.18)

Proof. First derive the bound for the mean field system. We suppose additionally F
satisfies (4.5) and m0/m∞ ∈ A+ without loss of generality, as they can be removed
by the approximation argument in the end of the proof of Theorem 2.1. Let a, b, c be
positive constants to be determined. Motivated by [40, Theorem A.18], we define Hérau’s
Lyapunov functional for mean field measures:

E(t,m) = F (m) +
1

2

∫
|v2|m+H(m) + at

∫
|∇v log η|2m

+ 2bt2
∫
∇x log η · ∇v log ηm+ ct3

∫
|∇x log η|2m

where η := m/m̂. From the argument of Theorem 2.1, we know that E(t,mt) is well
defined and t 7→ E(t,mt) admits derivative satisfying d

dtE(t,mt) ≤ −Y T
t K

′
tYt, where K ′t is

equal to
1− a+ 2at− 2

(
MF
mx +MF

mm

)
bt2 −2bt2 −2at− 4bt− 2MF

mmct
3 0

0 2at −2MF
mxct

3 −4bt2

0 0 2bt2 − 3ct2 0

0 0 0 2ct3


and Yt is defined by (4.13). We then choose the constants a, b, c depending only on MF

mx

and MF
mm such that ac > b2 and K ′t � 0 for t ∈ [0, 1]. Hence t 7→ E(t,mt) is non-increasing

on [0, 1] and the Fisher bound follows: for every t ∈ (0, 1],

I(mt|m̂t) ≤
C

t3
(
E(t,mt)−F(mt)

)
≤ C

t3
(
E(t,mt)−F(m∞)

)
≤ C

t3
(
E(0,m0)−F(m∞)

)
=
C

t3
(
F(m0)−F(m∞)

)
.

Here, in the second inequality, we use F(mt) ≥ F(m∞) which is a consequence of
Lemma 4.2. Note that this inequality relies on the convexity of F .

For the particle system we suppose additionally UN satisfies (4.20) and mN
0

/
mN
∞

satisfies (4.21) without loss of generality, as they can be removed by the argument in the
end of the proof of Lemma 4.9. We define

EN (t,mN ) = FN (mN ) +
1

2

∫
|v2|mN +H(mN ) + at

∫ ∣∣∇v log hN
∣∣2mN

+ 2bt2
∫
∇x log hN · ∇v log hNmN + ct3

∫ ∣∣∇x log hN
∣∣2mN
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where hN := mN
/
mN
∞. By the computations in Lemma 4.9, we have d

dtE
N
(
t,mN

t

)
≤

−(Y Nt )TK ′′t Y
N
t , where K ′′t is equal to

1− a+ 2at− 2
(
MF
mx +MF

mm

)
bt2 −2bt2 −2at− 4bt 0

2at −2
(
MF
mx +MF

mm

)
ct3 −4bt2

2bt2 − 3ct2 0

2ct3


and Y Nt is defined by (4.23). We choose again the constants a, b, c depending only on
MF
mx and MF

mm such that ac > b2 and t 7→ HN (t,mN
t ) is non-increasing on [0, 1]. Hence

we have for every t ∈ (0, 1],

I
(
mN
t

∣∣m̂N
∞
)
≤ C

t3

(
EN
(
t,mN

t

)
−FN

(
mN
t

))
≤ C

t3

(
EN
(
t,mN

t

)
−FN

(
mN
∞
))

≤ C

t3

(
EN
(
0,mN

0

)
−FN

(
mN
∞
))

=
C

t3

(
FN
(
mN

0

)
−FN

(
mN
∞
))

=
C

t3
H
(
mN

0

∣∣mN
∞
)
.

Similarly, we use the fact that FN
(
mN
t

)
−FN

(
mN
∞
)

= H
(
mN
t

∣∣mN
∞
)
≥ 0 to get the second

inequality. Here the difference is that the N -particle system is linear and this fact does
not rely on the convexity of F .

5.4 Propagation of chaos

Using all the regularization results proved in Sections 5.2 and 5.3 we can finally give
the proof of the main theorem.

Proof of Theorem 2.3. Let m0 and mN
0 be the respective initial values for the dynamics

(2.12) and (2.13) and suppose they have finite second moment. The first claim of the
theorem (2.22) can be written as two bounds on W 2

2

(
mN
t ,m

⊗N
t

)
, the first of which follows

directly from the finite-time bound in Proposition 5.2. The second claim (2.23) is nothing
but Lemma 5.3. It remains to find some C2, κ depending only on ρx, MF

mx, MF
mm and

prove

W 2
2

(
mN
t ,m

⊗N
t

)
≤ C2N

(t ∧ 1)6
W 2

2 (m0,m∞)e−κt

+
C2

(t ∧ 1)6
W 2

2

(
mN

0 ,m
⊗N
∞
)
e−(κ−C2/N)t +

C2d

κ− C2/N
(5.19)

for t > 0. Set t1 = t∧1
2 and t2 = t ∧ 1. By the Wasserstein to entropy regularization result

in Proposition 5.4, we can find a constant C depending on MF
mx and MF

mm such that

H(mt1 |m∞) ≤ C

t31
W 2

2 (m0,m∞) and H
(
mN
t1

∣∣mN
∞
)
≤ C

t31
W 2

2

(
mN

0 ,m
N
∞
)
.

In the following C may change from line to line and may depend additionally on the LSI
constant ρ. Applying the regularization in Proposition 5.5 to the dynamics with mt1 and
mN
t1 as respective initial values and noting that t2 − t1 ≤ 1 by definition, we obtain

I(mt2 |m̂t2) ≤ C

(t2 − t1)3

(
F(mt1)−F(m∞)

)
,

I
(
mN
t2

∣∣m̂N
t2

)
≤ C

(t2 − t1)3
H
(
mN
t1

∣∣mN
∞
)
,
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whereas F(mt1)−F(m∞) is bounded by the entropy sandwich in Lemma 4.2:

F(mt1)−F(m∞) ≤ CH(mt1 |m∞).

Consequently, both the measures mt2 and mN
t2 have finite entropy and finite Fisher

information, and we can apply respectively Theorems 2.1 and 2.2 to the dynamics with
initial values mt2 and mN

t2 . We then obtain

F(mt)−F(m∞) ≤ C

t61
W 2

2 (m0,m∞)e−κ(t−t2)

and

FN
(
mN
t

)
−NF(m∞) ≤ C

t61
W 2

2

(
mN

0 ,m
⊗N
∞
)
e−(κ−C/N)(t−t2) +

Cd

κ− C/N
.

Using consecutively the triangle inequality, Talagrand’s inequality (2.9) for m⊗N∞ and the
entropy inequalities in Lemmas 4.2 and 4.3, we have

W 2
2

(
mN
t ,m

⊗N
t

)
≤ 2W 2

2

(
mN
t ,m

⊗N
∞
)

+ 2NW 2
2 (mt,m∞)

≤ 2

ρ

(
H
(
mN
t

∣∣m⊗N∞ )
+NH(mt|m∞)

)
≤ 2

ρ

(
FN
(
mN
t

)
−NF(m∞) +N

(
F(mt)−F(m∞)

))
So the inequality (5.19) is proved by combining the above three inequalities.

A Lower-semicontinuities

Lemma A.1. The entropy H(·) and the Fisher information I(·) are lower-semicontinuous
with respect to the weak topology of P2. Consequently, under the assumption (2.2), if
(mn)n∈N is a sequence converging to m∗ in P2(R2d), then

lim inf
n→+∞

H(mn|m̂n) ≥ H(m∗|m̂∗) and lim inf
n→+∞

I(mn|m̂n) ≥ I(m∗|m̂∗).

Proof. The lower semicontinuity of m 7→ H(m) is classical. We show the lower semi-
continuity of the Fisher information. Let (mn)n∈N be a sequence converging to m∗ in
P2(Rd). Without loss of generality, we suppose I(mn) ≤M2 for every n ∈ N. This implies
in particular ‖∇mn‖L1 ≤ M by Cauchy–Schwarz. For every function ϕ belonging to
C∞c (Rd), we have

|〈∇ϕ,m∗〉| = lim
n→+∞

|〈∇ϕ,mn〉| ≤M‖ϕ‖∞.

Hence ‖∇m∗‖TV ≤M as well. Moreover, for every f ∈ Cc(Rd) and every ε > 0, we can
find ϕ ∈ C∞c (Rd) such that ‖f − ϕ‖∞ < ε

4M and n ∈ N such that |〈∇ϕ,mn −m∗〉| < ε
2 .

Then,

|〈f,∇(mn −m∗)〉| ≤ |〈f − ϕ,∇mn〉|+ |〈f − ϕ,∇m∗〉|+ |〈∇ϕ,mn −m∗〉|

< 2 · ε

4M
·M +

ε

2
= ε.

Equivalently, the sequence of Rd-valued Radon measures (∇mn)n∈N converges to ∇m
locally weakly. We then apply [1, Theorem 2.34] to obtain

lim inf
n→+∞

I(mn) ≥ I(m∗).

Finally, the lower semicontinuity of m 7→ H(m|m̂) (resp. m 7→ I(m|m̂)) follows from
the lower semicontinuity of m 7→ H(m) (resp. m 7→ I(m)) and the locally uniform
quadratic growth of x 7→ δF

δm (m,x) (resp. the locally uniform linear growth of x 7→
DmF (m,x)).
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B Convergence of non-linear functional of empirical measures

Let φ : P2(Rd) → R be a (non-linear) mean field functional and m be a probability
measure with finite second moment. We suppose the first and second-order functional
derivatives δφ

δm ,
δ2φ
δm2 exist and that (φ,m) satisfies

∀m′ ∈ P2(Rd), ∀x ∈ Rd,
∣∣Dmφ(m′, x)

∣∣ ≤M1, (B.1)

∀m′ ∈ P2(Rd),

∣∣∣∣∫∫ [ δ2φ

δm2
(m′, x, x)− δ2φ

δm2
(m′, x, y)

]
m(dx)m(dy)

∣∣∣∣ ≤M2 (B.2)

for some constants M1 and M2.

Remark B.1. The condition (B.2) is a modified version of the condition [39, (p-LFD)]. Our
version has the advantage of being intrinsic: the left hand side of (B.2) stays invariant

under the change δ2φ
δm2 (m,x, y)→ δ2φ

δm2 (m,x, y) + δφ1

δm (m, y) + φ2(m) for regular enough φ1

and φ2.

Lemma B.1. If the mean field functional φ and the measure m satisfy (B.1) and (B.2),
then for N i.i.d. random variables ξ1, . . . , ξN ∼ µ, we have

E
[
|φ(µξ)− φ(m)|2

]
≤ M2

1 Varm

N
+
M2

2

4N2
. (B.3)

Proof. We have the decomposition

E
[
|φ(µξ)− φ(m)|2

]
= Varφ(µξ) +

(
E
[
φ(µξ)

]
− φ(m)

)2
.

Thanks to (B.1), the mapping ξi 7→ φ(µξ) is M1

N -Lipschitz continuous, so by the Efron–
Stein inequality we have

Varφ(µξ) ≤ M2
1

N
Varm.

For the second term we apply the argument of [39, Theorem 4.2.9 (i)] and obtain∣∣E[φ(µξ)
]
− φ(m)

∣∣ ≤ M2

2N
.

C Validity of Girsanov transforms

We prove a lemma similar to [18, Lemma A.1] which allows us to justify Girsanov
transforms.

Lemma C.1. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. If β, γ, X, Y :

Ω× [0, T ]→ Rd are Ft-adapted continuous stochastic processes satisfying

|βt|+ |γt| ≤ C(1 + |Xt|+ |Vt|)

almost surely for some constant C, and if the tuple (X,V, β) solves

dXt = Vtdt,

dVt = βtdt+
√

2dWt

for an Ft-adapted Brownian Wt with E
[
|X0|2 + |V0|2

]
< +∞, then the exponential local

martingale

R· := exp

(∫ ·
0

γs · dWs −
1

2

∫ ·
0

|γs|2ds
)

is uniformly integrable.
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Proof. It suffices to verify E[RT ] = 1. Put M· = R·(1 + |X·|2 + |V·|2). By Itō’s formula, the
local semimartingale satisfies

dMt = 2Rt
(
Xt · Yt + (βt +

√
2γt) · Yt + 1

)
dt+Rt

(
(1 + |Xt|2 + |Yt|2)γt + 2

√
2Yt
)
·dWt.

Using the uniform linear growth condition of β, γ, we can find a constant C such
that t 7→ e−CtMt is a local supermartingale. But e−CtMt ≥ 0. So by Fatou’s lemma
t 7→ e−CtMt is really a supermartingale and this yields E[Mt] ≤ eCtE[M0]. The Itō’s
formula for R· writes

dRt = Rtγt · dWt.

So for ε > 0 the bounded supermartingale R·
1+εR·

satisfies

d
Rt

1 + εRt
= − εR2

tγ
2
t

(1 + εRt)3
dt+

Rt
(1 + εRt)2

γt · dWt.

Taking expectations on both sides, we obtain

E

[
RT

1 + εRT

]
=

1

1 + ε
− E

[∫ T

0

εR2
tγ

2
t

(1 + εRt)3
dt

]
.

Using the bound εR2
tγ

2
t

(1+εRt)3
≤ Rtγ

2
t ≤ CMt, we take the limit ε → 0 by the dominated

convergence theorem and obtain E[RT ] = 1.
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