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Abstract
We study two-layer neural networks in the mean field limit, where the number of neurons
tends to infinity. In this regime, the optimization over the neuron parameters becomes
the optimization over the probability measures, and by adding an entropic regularizer,
the minimizer of the problem is identified as a fixed point. We propose a novel training
algorithm named entropic fictitious play, inspired by the classical fictitious play in game
theory for learning Nash equilibriums, to recover this fixed point, and the algorithm exhibits
a two-loop iteration structure. Exponential convergence is proved in this paper and we also
verify our theoretical results by simple numerical examples.
Keywords: mean field optimization, neural network, fictitious play, relative entropy, free
energy function

1. Introduction

Deep learning has achieved unprecedented success in numerous practical scenarios, including
computer vision, natural language processing and even autonomous driving, which leverages
deep reinforcement learning techniques (Krizhevsky et al., 2012; Goldberg, 2016; Arulku-
maran et al., 2017). Stochastic gradient algorithms (SGD) and their variants have been
widely used to train neural networks, that is, to minimize networks’ loss and thereby to
fit the data available effectively (Le Cun et al., 1998; Kingma and Ba, 2014). However,
due to the complicated network structures and the non-convexity of typical optimization
objectives, mathematical guarantees of convergence to the optimizer remain elusive. Recent
studies on the insensibility of the number of neurons on one layer when it is sufficiently large
(Hastie et al., 2022), and the feasibility of interchanging the neurons on one layer (Nguyen
and Pham, 2020; Rotskoff and Vanden-Eijnden, 2018) both motivated the investigation of
mean field regime. In practice, over-parameterized neural networks with a large number of
neurons are commonly employed in order to achieve high performance (Huang et al., 2017).
This further motivates researchers to view neurons as random variables following a proba-
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bility distribution and the summation over neurons as an expectation with respect to this
distribution (Sirignano and Spiliopoulos, 2020).

Another appealing approach to address the global convergence of over-parameterized
networks is through the neural tangent kernel (NTK) regime (Jacot et al., 2018). In this
regime, it is believed that when the network width tends to infinity, the parameter updates,
driven by stochastic gradient descent, do not significantly deviate from i.i.d Gaussian initial-
ization, and these updates are called lazy training (Tzen and Raginsky, 2020; Chizat et al.,
2019). As a result, training of neural networks can be depicted as regression with a fixed
kernel given by linearization at initialization, leading to the exponential convergence (Jacot
et al., 2018). By appropriate time rescaling, it is possible for the dynamics of the kernel
method to track the SGD dynamics closely (Mei et al., 2019; Allen-Zhu et al., 2019). Other
studies, such as Dou and Liang (2021), explore the reproducing kernel Hilbert space and
demonstrate that the gradient flow indeed converges to the kernel ridgeless regression with
an adaptive kernel. Besides in Chen et al. (2020), the researchers extend the definition of
the kernel and show that the training with an appropriate regularizer also exhibits behav-
iors similar to the kernel method. However, the kernel behavior primarily manifests during
the early stages of the training process, whereas the mean field model reveals and explains
the longer-term characteristics (Mei et al., 2019). Furthermore, another advantage of the
mean field settings compared to NTK is the presence of feature learning, in contrast to the
perspective of random feature (Suzuki, 2019; Ghorbani et al., 2019).

In the mean field limit where neurons become infinitely many, the dynamics of the neu-
ron parameters under gradient descent can be understood as a gradient flow of measures in
Wasserstein-2 space, providing a geometric interpretation of the learning algorithm. This
flow is also described by a PDE system where the unknown is the density function of the
measure. Well-posedness of the PDE system, discretization errors and finite-time propaga-
tion of chaos are studied in recent works (Nguyen and Pham, 2020; Mei et al., 2019; Fang
et al., 2021; Araújo et al., 2019; Sirignano and Spiliopoulos, 2022). On the other hand,
extensive analysis has been conducted to investigate the convergence of such dynamics to
their equilibrium. The convergence of gradient flows modeling shallow networks is studied
in Chizat and Bach (2018); Mei et al. (2019); Hu et al. (2021); more recent works extend the
gradient-flow formulation and study deep network structures (Fang et al., 2021; Nguyen and
Pham, 2020). Sufficient conditions for the convergence under non-convex loss functions have
been given in Nguyen and Pham (2020), and the discriminatory properties of the non-linear
activation function have been exploited in Sirignano and Spiliopoulos (2022); Rotskoff and
Vanden-Eijnden (2018) to deduce the convergence.

In this paper, one key assumption is the convexity of the objective functional with re-
spect to its measure-valued argument. This assumption has been exploited by many recent
works. Notably, Nitanda et al. (2022) have established the exponential convergence of the
entropy-regularized problem in both discrete and continuous-time settings by utilizing the
log-Sobolev inequality (LSI), following the observations in Nitanda et al. (2021). Addition-
ally, Nitanda and Suzuki (2017) estimate the generalization error and prove a polynomial
convergence rate by leveraging quadratic expansions of the loss function. Wei et al. (2019)
also prove polynomial convergence rates in different scenarios, where they add noise to the
gradient descent and assume the activation and regularization functions are homogeneous.
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Entropic Fictitious Play

With the existing convergence results on gradient flows for the mean field optimization
problem in mind, the following question arises to us:

Do there exist dynamics other than gradient flows
that solve the (regularized) mean field optimization efficiently?

We believe the quest for its answer will not be wasted efforts, as it may lead to potentially
highly performant algorithms for training neural networks, and also because the dynamics
similar to that we consider in this paper have already found applications to various mean
field problems.

We recall the classical fictitious play in game theory originally introduced by Brown
Brown (1951) to learn Nash equilibriums. During the fictitious play, in each round of re-
peated games, each player optimally responds to the empirical frequency of actions taken by
their opponents (hence the name). While the fictitious play does not necessarily converge
in general cases (Shapley, 1964), it does converge for zero-sum games (Robinson, 1951) and
potential games (Monderer and Shapley, 1996). More recently, this method has been revis-
ited in the context of mean field games (Cardaliaguet and Hadikhanloo, 2017; Hadikhanloo
and Silva, 2019; Perrin et al., 2020; Lavigne and Pfeiffer, 2022).

In this paper, we draw inspiration from the classical fictitious play and propose a similar
algorithm, called entropic fictitious play (EFP), to solve mean field optimization problems
emerging from the training of two-layer neural networks. Our algorithm shares a two-
loop iteration structure with the particle dual average (PDA) algorithm, recently proposed
by Nitanda et al. (2021). They estimated the computational complexity and conducted
various numerical experiments for PDA to show its effectiveness in solving regularized mean
field problems. However, PDA is essentially different from our EFP algorithm and their
differences will be discussed in Sections 2 and 4.

2. Problem Setting

Let us first recall how the (convex) mean field optimization problem emerges from the
training of two-layer neural networks. While the universal representation theorem tells us
that a two-layer network can arbitrarily well approximate the continuous function on the
compact time interval (Cybenko, 1989; Barron, 1993), it does not tell us how to find the
optimal parameters. One is faced with the non-convex optimization problem

min
βn,i∈R,αn,i∈Rd,γn,i∈R

∫
R×Rd

`

(
y,

1

n

n∑
i=1

βn,iϕ(αn,i · z + γn,i)

)
ν(dy dz), (1)

where θ 7→ `(y, θ) is convex for every y, ϕ : R → R is a bounded, continuous and non-
constant activation function, and ν is a measure of compact support representing the data.
Denote the empirical law of the parameters mn by mn = 1

n

∑n
i=1 δ(βn,i,αn,i,γn,i). Then the

neural network output can be written by

1

n

n∑
i=1

βn,iϕ(αn,i · z + γn,i) =

∫
Rd+2

βϕ(α · z + γ)mn(dβ dα dγ).

For technical reasons we may introduce a truncation function h(·) whose parameter is de-
noted by β as in Hu et al. (2021). To ease the notation we denote x = (β, α, γ) ∈ Rd+2
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and ϕ̂(x, z) = h(β)ϕ(α · z + γ). Denote also by Em = EX∼m the expectation of the ran-
dom variable X of law m. Now we relax the original problem (1) and study the mean field
optimization problem over the probability measures,

min
m∈P(Rd)

F (m), where F (m) :=

∫
Rd
`
(
y,Em[ϕ̂(X, z)]

)
ν(dy dz) (2)

This reformulation is crucial, because the potential functional F defined above is convex in
the space of probability measure. In this paper, as in Hu et al. (2021); Mei et al. (2018),
we shall add a relative entropy term H(m|g) :=

∫
x∈Rd log dm

dg (x)m(dx) in order to regularize
the problem. The regularized problem then reads

min
m∈P(Rd)

V σ(m), where V σ(m) := F (m) +
σ2

2
H(m|g). (3)

Here we choose the probability measure g to be a Gibbs measure with energy function U ,
that is, the density of g satisfies g(x) ∝ exp

(
−U(x)

)
. It is worth noting that if a probability

measure has finite entropy relative to the Gibbs measure g, then it is absolutely continuous
with respect to the Lebesgue measure. Hence the density of m exists whenever V σ(m) is
finite. In the following, we will abuse the notation and use the same letter to denote the
density function of m.

Since F is convex, together with mild conditions, the first-order condition says that m∗

is a minimizer of V σ if and only if

δF

δm
(m∗, x) +

σ2

2
logm∗(x) +

σ2

2
U(x) = constant, (4)

where δF
δm is the linear derivative, whose definition is postponed to Assumption 1 below.

Further, note that m∗ satisfying (4) must be an invariant measure to the so-called mean
field Langevin (MFL) diffusion:

dXt = −
(
∇x

δF

δm
(mt, Xt) +

σ2

2
∇xU(Xt)

)
dt+ σ dWt, where mt := Law(Xt).

In Hu et al. (2021) it has been shown that the MFL marginal law mt converges towards m∗,
and this provides an algorithm to approximate the minimizer m∗.

The starting point of our new algorithm is to view the first-order condition (4) as a fixed
pointed problem. Given m ∈ P(Rd), let Φ(m) be the probability measure such that

δF

δm
(m,x) +

σ2

2
log Φ(m)(x) +

σ2

2
U(x) = constant. (5)

By definition, a probability measure m satisfies the first-order condition (4) if and only if m
is a fixed point of Φ. Throughout the paper we shall assume that there exists at most one
probability measure satisfying the first-order condition (equivalently, there exists at most
one fixed point for Φ). This is true when the objective functional F is convex. Indeed, as
the relative entropy m 7→ H(m|g) is strictly convex, the free energy V σ = F + σ2

2 H(·|g) is
also strictly convex and therefore admits at most one minimizer.

4
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It remains to construct an algorithm to find the fixed point. Observe that Φ(m) defined
in (5) satisfies formally

Φ(m) = arg min
µ∈P(Rd)

EX∼µ
[
δF

δm
(m,X)

]
+
σ2

2
H(µ|g), (6)

that is, the mapping Φ is given by the solution to a variational problem, similar to the
definition of Nash equilibrium. This suggests that we can adapt the classical fictitious play
algorithm to approach the minimizer. In this context, Φ(mt) is the “best response” to mt

in the sense of (6), and we define the evolution of the “empirical frequency” of the player’s
actions by

dmt = α
(
Φ(mt)−mt

)
dt, (7)

where α is a positive constant and should be understood as the learning rate. The Duhamel’s
formula for this equation reads

mt =

∫ t

0
αe−α(t−s) Φ(ms) ds+ e−αtm0,

so mt is indeed a weighted empirical frequency of the previous actions m0 and
(
Φ(ms)

)
s≤t.

We propose a numerical scheme corresponding to the entropic fictitious play described
informally in Algorithm 1, which consists of inner and outer iterations. The inner iteration,
described later in Algorithm 2 for a specific example, calculates an approximation of Φ(mt)
given the measure mt. Note that we are sampling a classical Gibbs measure so various
Monte Carlo methods can be used. The outer iterations let the measure evolve following
the entropic fictitious play (7) with a chosen time step ∆t.

Algorithm 1: Entropic fictitious play algorithm
Input: objective functional F , reference measure g ∝ exp(−U), initial distribution

m0, time step ∆t, interation times T .
1 for t = 0, ∆t, 2∆t, . . . , T −∆t do

// Inner iteration
2 Sample Φ(mt+∆t) ∝ exp

(
− δF
δm(mt, x)− σ2

2 U(x)
)
by Monte Carlo;

// Outer iteration
3 Update mt+∆t ← (1− α∆t)mt + α∆tΦ(mn);
Output: distribution mT .

2.1 Related Works

2.1.1 Mean Field Optimization

In contrast to the entropy-regularized mean field optimization addressed by our EFP algo-
rithm, the unregularized optimization has also been studied in recent works (Chizat and
Bach, 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2022). Fang
et al. (2021) developed a mean field framework that captures the feature evolution during
multi-layer networks’ training and analyze the global convergence for fully-connected neural
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networks and residual networks, introduced by He et al. (2016). Deep network settings have
also been studied in Sirignano and Spiliopoulos (2022); Nguyen (2019); Araújo et al. (2019);
Pham and Nguyen (2021); Nguyen and Pham (2020).

2.1.2 Exponential Convergence Rate

The exponential convergence rate of the mean field Langevin dynamics has been shown in
Nitanda et al. (2022) by exploiting the log-Sobolev inequality, which critically relies on the
non-vanishing entropic regularization. On the other hand, Chizat (2022) has studied the an-
nealed mean field Langevin dynamics, where the time steps decay following an O

(
(log t)−1

)
trend, and has shown the convergence towards the minimizer of the unregularized objective
functional. In this paper, we will also prove an exponential convergence rate for our EFP
algorithm and the precise statement can be found in Theorem 10. The convergence rate
obtained solely depends on the learning rate, which can be chosen in a fairly arbitrary way.
This seems to be an improvement over the LSI-dependent rate in Nitanda et al. (2022);
Chizat (2022). However, the arbitrariness is due to the fact that our theoretical result only
addresses the outer iteration and assumes that the target measure of inner one can be per-
fectly sampled (see Algorithm 1), and our convergence rate can not be directly compared
to the ones obtained by Nitanda et al. (2022); Chizat (2022). However, the inner iteration
aims to sample a Gibbs measure, which is a classical task for which various Monte Carlo al-
gorithms are available. (see Remark 12). Furthermore, we propose a “warm start” technique
to alleviate the computational burden of the inner iterations (see Algorithm 2).

2.1.3 Particle Dual Averaging

Our entropic fictitious play algorithm shares similarities with the particle dual averaging
algorithm introduced in Nitanda et al. (2021). PDA is an extension of regularized dual
average studied in Nesterov (2005); Xiao (2010), and can be considered the particle version of
the dual averaging method designed to solve the regularized mean field optimization problem
(3). The key feature shared by PDA and EFP is the two-loop iteration structure. In the
PDA outer iteration, we calculate a moving average f̃n of the linear functional derivative of
the objective δF

δm ,

f̃n = (1− α∆t)
δF

δm
(m̃n−1, ·) + α∆t

δF

δm
(m̃n−1, ·); (8)

the measure m̃n is on the other hand updated by the inner iteration,

m̃n+1(x) = arg min
m∈P(Rd)

Em
[
f̃n(x)

]
+
σ2

2
H(m|g), (9)

which can be calculated by a Gibbs sampler. While the PDA inner iteration (9) is identical
to that of EFP, their outer iterations are distinctly different. The PDA outer iteration
updates the linear derivatives δF

δm(m̃n, ·) by forming a convex combination, while the EFP
outer iteration updates the measures by a convex combination, which serves as the first
argument of the linear derivative δF

δm(·, ·). One disadvantage of PDA is that one needs to
store the history of measures (m̃i)

n
i=1 to evaluate f̃n in (8), which may lead to high memory

usage in numerical simulations. Our EFP algorithm circumvents this numerical difficulty
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as the dynamics (7) corresponds to a birth-death particle system whose memory usage is
bounded (see discussions in Section 4.2). As a side note, EFP and PDA coincide when the
mapping m 7→ δF

δm(m, ·) is linear. This occurs when F is quadratic in m. For example, if F
is defined by (2) with a quadratic loss, `(y, θ) = |y − θ|2, then its functional derivative

δF

δm
(m,x) = 2

∫
Rd

(
Em[ϕ̂(X, z)]− y

)
ϕ̂(x, z) ν(dy dz)

is linear in m. Another difference is that the PDA outer iteration is updated with diminish-
ing time steps (or equivalently, learning rates) ∆t = O

(
n−1

)
, which leads to the absence of

exponential convergence, while EFP fixes the time step ∆t and exhibits exponential conver-
gence (modulo the errors from the inner iterations). Finally, the condition (A3) of Nitanda
et al. (2021) seems difficult to verify and our method does not rely on such an assumption.

2.2 Organization of Paper

In Section 3 we state our results on the existence and convergence of entropic fictitious
play. In Section 4 we provide a toy numerical experiment to showcase the feasibility of the
algorithm for the training two-layer neural networks. Finally the proofs are given in Section 5
and they are organized in several subsections with a table of contents in the beginning to
ease the reading.

3. Main Results

Fix an integer d > 0 and a real number p ≥ 1. Denote by P(Rd) the set of the probability
measures on Rd and by Pp(Rd) the set of those with finite p-moment. We suppose the
following assumption throughout the paper.

Assumption 1 1. The mean field functional F : P(Rd) → R is non-negative and C1,
that is, there exists a continuous function, also called functional linear derivative,
δF
δm : P(Rd)× Rd → R such that for every m0, m1 ∈ P(Rd),

F (m1)− F (m0) =

∫ 1

0

∫
Rd

δF

δm
(mλ, x)(m1 −m0)mλ(dx) dλ,

where mλ := (1 − λ)m0 + λm1. Moreover, there exists constants LF , MF > 0 such
that for every m, m′ ∈ P(Rd) and for every x, x′ ∈ Rd,∣∣∣∣ δFδm(m,x)− δF

δm
(m′, x′)

∣∣∣∣ ≤ LF (Wp(m,m
′) + |x− x′|

)
, (10)∣∣∣∣ δFδm(m,x)

∣∣∣∣ ≤MF . (11)

2. The function U : Rd → R is measurable and satisfies∫
Rd

exp
(
−U(x)

)
dx = 1.
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Moreover it satisfies

ess inf
x∈Rd

U(x) > −∞ and lim inf
x→∞

U(x)

|x|p
> 0.

Given a function U satisfying Assumption 1, define the Gibbs measure g on Rd by its
density g(x) := exp(−U(x)). In particular, given m ∈ Pp(Rd), we can consider the relative
entropy between m and g, 1

H(m|g) =

∫
x∈Rd

log
dm

dg
(x)m(dx).

In this paper we consider the entropy-regularized optimization

inf
m∈P(Rd)

V σ(m), where V σ(m) := F (m) +
σ2

2
H(m|g).

Our aim is to propose a dynamics of probability measures converging to the minimizer of
the value function V σ.

Proposition 1 If Assumption 1 holds, then there exists at least one minimizer of V σ, which
is absolutely continuous with respect to the Lebesgue measure and belongs to Pp(Rd).

Given the result above, we can restrict ourselves to the space of probability measures
of finite p-moments when we look for minimizers of the regularized problem V σ. Before
introducing the dynamics, let us recall the first-order condition for being a minimizer.

Proposition 2 (Proposition 2.5 of Hu et al. 2021) Suppose Assumption 1 holds. If
m∗ minimizes V σ in P(Rd), then it satisfies the first-order condition

δF

δm
(m∗, ·) +

σ2

2
logm∗(·) +

σ2

2
U(·) is a constant Leb-a.e., (12)

where m∗(·) denotes the density function of the measure m∗.
Conversely, if F is additionally convex, then every m∗ satisfying (12) is a minimizer of

V σ and such a measure is unique.

Definition 3 For each µ ∈ P(Rd), define G(µ; ·) : P(Rd)→ R by

G(µ;m) = EX∼µ
[
δF

δm
(m,X)

]
. (13)

Furthermore, given m ∈ P(Rd), we define a measure m̂ ∈ P(Rd) by

m̂ = arg min
µ∈P(Rd)

G(µ;m) +
σ2

2
H(µ|g), (14)

whenever the minimizer exists and is unique.

1. The relative entropy is defined to be +∞ whenever the integral is not well defined. Therefore, the relative
entropy is defined for every measure in P(Rd) and is always non-negative.
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Proposition 4 Suppose Assumption 1 holds. The minimizer defined in (14) exists, is
unique, and belongs to Pp(Rd). This defines a mapping Pp(Rd) 3 m 7→ m̂ ∈ Pp(Rd),
which we denote by Φ in the following.

Since δG
δµ (µ, x;m) = δF

δm(m,x), according to the first-order condition in Proposition 2, m̂
must satisfy

δF

δm
(m, ·) +

σ2

2
log m̂+

σ2

2
U is a constant Leb-a.e. (15)

Therefore, a probability measurem is a fixed point of the mapping Φ if and only if it satisfies
the first-order condition (12). In particular, by Propositions 1 and 2, there exists at least
one minimizer of V σ, and it is a fixed point of the mapping Φ. On the other hand, if Φ
admits only one fixed point, then it must be the unique minimizer of V σ.

Given the definition of m̂, the entropic fictitious play dynamics is the flow of measures
(mt)t≥0 defined by

dmt

dt
= α (m̂t −mt). (16)

This equation is understood in the sense of distributions a priori. We shall show that the
entropic fictitious play converges towards the minimizer of V σ under mild conditions.

Remark 5 Choosing the relative entropy to be the regularizer may seem arbitrary. It is
motivated by the following two observations:

• If F is convex, the strict convexity of entropy ensures that the mapping Φ admits at
most one fixed point.

• In numerical applications, one needs to sample the distribution m̂t efficiently. Applying
the entropic regularization, we can sample m̂t by Monte Carlo methods since it is in
the form of a Gibbs measure according to (14). See Section 4 for more details.

Definition 6 (Dynamical system per Definition 4.1.1 of Henry 1981) Let S[t] be a
mapping from Wp to itself for every t ≥ 0. We say the collection (S[t])t≥0 is a dynamical
system on Wp if

1. S[0] is the identity on Wp;

2. S[t](S[t′]m) = S[t+ t′]m for every m ∈ Pp(Rd) and t, t′ ≥ 0;

3. for every m ∈ Pp(Rd), t 7→ S[t]m is continuous;

4. for every t ≥ 0, m 7→ S[t]m is continuous with respect to the topology of Wp.

Proposition 7 (Existence and wellposedness of the dynamics) Suppose Assumption 1
holds. Let α be a positive real and let m0 be in Pp(Rd) for some p ≥ 1. Then there exists a
solution (mt)t≥0 ∈ C

(
[0,+∞);Wp

)
to (16).

When p = 1, the solution is unique and depends continuously on the initial condition.
In other words, there exists a dynamical system (S[t])t≥0 on W1 such that mt defined by
mt = S[t]m0 solves (16).
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If additionally the initial value m0 is absolutely continuous with respect to the Lebesgue
measure, then the solution mt admits density for every t > 0, and the densities mt(·) solves
(16) classically. That is to say, for every x ∈ Rd the mapping t 7→ mt(x) is C1 on [0,+∞)
and the derivative satisfies

∂mt(x)

∂t
= α

(
m̂t(x)−mt(x)

)
. (17)

for every t > 0.

Now we study the convergence of the entropic fictitious play dynamics and to this end
we introduce the following assumption.

Assumption 2 1. The mapping Φ : Pp(Rd) 3 m 7→ m̂ ∈ Pp(Rd) admits a unique fixed
point m∗.

2. The initial value m0 belongs to Pp′(Rd) for some p′ > p and H(m0|g) < +∞.

Remark 8 Under Assumption 1, the first condition above is implied the convexity of F .
Indeed, if F is convex, then the regularized objective V σ reads V σ = F + H(·|g) and is
therefore strictly convex. So it admits a unique minimizer m∗ in Pp(Rd) and by our previous
arguments m∗is also the unique fixed point of the mapping Φ.

Theorem 9 (Convergence in the general case) Let Assumptions 1 and 2 hold. If (mt)t≥0

is a flow of measures in Wp solving (16), then mt converges to m∗ in Wp when t → +∞,
and for every x ∈ Rd, mt(x)→ m∗(x) when t→ +∞.

Moreover, the mapping t 7→ V σ(mt) is differentiable with derivative

dV σ(mt)

dt
= −ασ

2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
,

and it satisfies
lim

t→+∞
V σ(mt) = V σ(m∗).

Given the convexity and higher differentiability of F , we also show that the convergence
of V σ(mt) is exponential.

Assumption 3 The mean-field function F is convex and C2 with bounded derivatives. That
is to say, there exists a continuous and bounded function δ2F

δm2 : P(Rd)× Rd × Rd → R such
that it is the linear functional derivative of δF

δm .

Theorem 10 Let Assumptions 1, 2 and 3 hold. Then we have for every t ≥ 0,

0 ≤ V σ(mt)− inf
m∈P(Rd)

V σ(m) ≤ σ2

2
H(m0|m̂0)e−αt.

10
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4. Numerical Example

In this section we walk through the implementation of the entropic fictitious play in details
by treating a toy example. Recall that in Algorithm 1 the measures are updated following
the outer iteration

dmt

dt
= α (m̂t −mt),

and m̂t = Φ(mt) is evaluated by the inner iteration.

4.1 Evaluation of Gibbs measure

Since m̂t is a Gibbs measure corresponding to the potential δFδm(mt, ·)+ σ2

2 U , it is the unique
invariant measure of a Langevin dynamics under the following technical assumptions on F
and U .

Assumption 4 1. For all m ∈ P(Rd), the function δF
δm(m, ·) : Rd → R has a locally

Lipschitz derivative, i.e. the intrinsic derivative of F , DF (m, ·) := ∇ δF
δm(m, ·) exists

everywhere and is locally Lipschitz.

2. The function U is C2, and there exists κ > 0 such that
(
∇U(x)−∇U(y)

)
· (x− y) ≥

κ(x− y)2 when |x− y| is sufficiently large.

Proposition 11 Suppose Assumptions 1 and 4 hold. Let m be a probability measure on Rd.
Then a probability measure m̂ ∈ P(Rd) satisfies the condition (15) if and only if it is the
unique stationary measure of the Langevin dynamics

dΘs = −
(
DF (m,Θs) +

σ2

2
∇U(Θs)

)
ds+ σ dWs, (18)

where W is a standard Brownian motion. Moreover, if Law(Θ0) ∈ ∪p>2Pp(Rd), then the
marginal distributions Law(Θs) converge in Wasserstein-2 distance towards the invariant
measure.

We refer readers to Theorem 2.11 of Hu et al. (2021) for the proof of the proposition.

Remark 12 1. Various Markov chain Monte Carlo (MCMC) methods are available for
sampling Gibbs measures (Andrieu et al., 2003; Karras et al., 2022). Here in our inner
iteration, we simulate the Langevin diffusion (18) by the simplest unadjusted Langevin
algorithm (ULA) proposed in Parisi (1981). However, there are many other efficient
MCMC methods for our aim. For example, we could employ the Metropolis-adjusted
Langevin algorithms or the Hamiltonian Monte Carlo (HMC) methods based on an
underdamped dynamics with fictitious momentum variables (Neal, 2011).

2. Exponential convergence in the sense of relative entropy for ULA proposed above is
shown in Vempala and Wibisono (2019), based on a log-Sobolev inequality condition
for potential. There are also convergence results in the sense of the Wasserstein and to-
tal variation distance for Langevin Monte Carlo. For example, Durmus and Moulines
(2019) prove Wasserstein convergence for ULA, Bou-Rabee and Eberle (2023); Cheng
et al. (2018) prove respectively convergence in total variation and in Wasserstein dis-
tance for Hamiltonian Monte Carlo.

11
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4.2 Simulation of Entropic Fictitious Play

Now we explain our numerical scheme of the entropic fictitious play dynamics (16). First
we approximate the probability distributions mt by empirical measures of particles in the
form

mt =
1

N

N∑
i=1

δΘit
,

where Θi
t ∈ Rd encapsulates all the parameters of a single neuron in the network. In order

to evaluate the Gibbs measure m̂t, we simulate a system of M Langevin particles using the
Euler scheme for a long enough time S, i.e.

Θi
t,s+∆s = Θi

t,s −
(
DF (mt,Θ

i
t,s) +

σ2

2
∇U(Θi

t,s)

)
∆s+ σ

√
∆sN i

t,s, (19)

for 1 ≤ i ≤ M and s < S, where N i
t,s are independent standard Gaussian variables. We

then set m̂t equal to the empirical measure of the particles at the final time S, (Θi
t,S)1≤i≤M ,

i.e.

m̂t :=
1

M

M∑
i=1

δΘit,S
.

To speed up the EFP inner iteration we adopt the following warm start technique. For
each t, the initial value of the inner iteration (Θi

t+∆t,0)1≤i≤M is chosen to be the final value
of the previous inner iteration, i.e. (Θi

t,S)1≤i≤M . This approach exploits the continuity of
the mapping Φ proved in Corollary 15: if Φ is continuous, the measures Φ(mt+∆t), Φ(mt)
should be close to each other as long as mt+∆t, mt are close, and this is expected to hold
when the time step ∆t is small. Hence this choice of initial value for the inner iterations
should lead to less error in sampling the Gibbs measure m̂t.

Then we explain how to simulate the outer iteration. The naïve approach is to add
particles to the empirical measures by

mt+∆t = (1− α∆t)mt + α∆t m̂t =
1− α∆t

N

N∑
i=1

δΘit
+
α∆t

N

N∑
i=1

δΘit,S
.

However, this leads to a linear explosion of the number of particles when t→ +∞ as at each
step it is incremented by M . To avoid this numerical difficulty, we view the EFP dynamics
(16) as a birth-death process and kill bα∆tNc particles before adding the same number of
particles that represents m̂t, calculated by the Gibbs sampler. In this way, the number of
particles to keep remains bounded uniformly in time and the memory use never explodes.

4.3 Training a Two-Layer Neural Network by Entropic Fictitious Play

We consider the mean field formulation of two-layer neural networks in Section 1 with the
following specifications. We choose the loss function ` to be quadratic: `(y, θ) = 1

2 |y − θ|
2,

and the activation function to be the modified ReLU, ϕ(t) = max
(
min(t, 5), 0

)
. We also fix

a truncation function h defined by h(x) = max
(
min(x, 5),−5

)
. In this case, the objective

12
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functional F reads

F (m) =
1

2K

K∑
k=1

(
yk − Em

[
h(β)ϕ(α · zk + γ)

])2
.

where (α, β, γ) is a random variable distributed as m and (zk, yk)
K
k=1 is the data set with

zk being the features and yk being the labels. Finally we choose the reference measure g by
fixing U(x) = 1

2x
2 + constant, where the constant ensures that

∫
g =

∫
exp
(
−U(x)

)
dx = 1.

Under this choice, one can verify Assumptions 1, 2, 3, and the Langevin dynamics (19) for
the inner iteration at time t reads

dβs =
1

K
h′(βs)ϕ(αs · zk + γs)

K∑
k=1

(
yk − Emt

[
h(β)ϕ(α · zk + γ)

])
ds− σ2

2
βs ds+ σ dW β

s

dαs =
1

K
h(βs)zkϕ

′(αs · zk + γs)
K∑
k=1

(
yk − Emt

[
h(β)ϕ(α · zk + γ)

])
ds− σ2

2
αs ds+ σ dWα

s

dγs =
1

K
h(βs)ϕ

′(αs · zk + γs)
K∑
k=1

(
yk − Emt

[
h(β)ϕ(α · zk + γ)

])
ds− σ2

2
γs ds+ σ dW γ

s

where W {α,β,γ} are independent standard Brownian motions in respective dimensions. The
discretized version of this dynamics is then calculated on the interval [0, S].

As a toy example, we approximate the 1-periodic sine function z 7→ sin(2πz) defined on
[0, 1] by a two-layer neural network. We pick K = 101 samples evenly distributed on the
interval [0, 1], i.e. zk = k−1

101 , and set yk = sin 2πzk for k = 1, . . . , 101. The parameters for
the outer iteration are

• time step ∆t = 0.2,

• horizon T = 120.0,

• learning rate α = 1,

• the number of neurons N = 1000,

• the initial distribution of neurons m0 = N (0, 152).

For each t, we calculate the inner iteration (19) with the parameters:

• regularization σ2/2 = 0.0005,

• time step ∆s = 0.1,

• time horizon for the first step Sfirst = 100.0, and the remaining Sother = 5.0,

• the number of particles for simulating the Langevin dynamics M = N = 1000,

13
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See Algorithm 2 for a detailed description.
We present our numerical results. We plot the learned approximative functions for differ-

ent training epochs (t/∆t = 10, 20, 50, 100, 200, 600) and compare them to the objective in
Figure 1(a). We find that in the last training epoch the sine function is well approximated.
We also investigate the validation error, calculated from 1000 evenly distributed points in
the interval [0, 1], and plot its evolution in Figure 1(b). The final validation error is of the
order of 10−4 and the whole training process consumes 63.02 seconds on the laptop (CPU
model: i7-9750H). However, the validation error does not converge to 0, possibly due to the
entropic regularizer added to the original problem.

Algorithm 2: EFP with Langevin inner iterations
Input: objective function F (·), reference measure g with potential U ,

regularization parameter σ, initial distribution of parameter m0, outer
iterations time step ∆t and horizon T , inner iterations time step ∆s and
horizon S, learning rate α, and number of particles in simulation N .

1 generate i.i.d. Θi
0 ∼ m0, i = 1, . . . , N ;

2 (Θi
0,0)Ni=1 ← (Θi

0)Ni=1;
3 for t = 0, ∆t, 2∆t, . . . , T −∆t do
4 if t = 0 then
5 S ← Sfirst;
6 else
7 S ← Sother;

// Inner iterations
8 for s = 0, ∆s, 2∆s, . . . , S −∆s do
9 generate standard normal variable N i

t,s;
// Update the inner particles by Langevin dynamics

10 for i = 1, 2, . . . , N do
11 Θi

t,s+∆s ← Θi
t,s −

(
DF (mt,Θ

i
t) + σ2

2 ∇U(Θi
t,s)
)

∆s+ σ
√

∆sN i
t,s;

// Outer iteration
12 K ← bα∆tNc;
13 choose uniformly K numbers from {1, . . . , N} and denote them by (ik)

K
k=1;

14 for i = 1, 2, . . . , N do
15 if i ∈ {ik}Kk=1 then
16 Θi

t+∆t ← Θi
t,S ;

17 else
18 Θi

t+∆t ← Θi
t;

// Warm start for inner iterations
19 for i = 1, 2, . . . , N do
20 Θi

t+∆t,0 ← Θi
t,S ;

Output: distribution mT = 1
N

∑N
i=1 δΘiT

.

14
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(a) Approximated function value. (b) Validation error in training.

Figure 1: (a) The approximated function value at different time: the colors from shallow to
deep represents the number of outer iterations processed, epoch 10, 20, 50, 100,
200, 600 respectively; (b) The validation error at different training epochs.

5. Proofs
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5.1 Proof of Propositions 1 and 4

Proof of Propositions 1 and 4 We only show Proposition 1 as the method is completely
the same for the other proposition.

By Assumption 1 we have lim infx→∞ U(x)/|x|p > 0. Then we can find R, c > 0 such
that U(x) ≥ c|x|p for |x| > R. Choose a minimizing sequence (mn)n∈N in the sense that
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V σ(mn)↘ infm∈P(Rd) V
σ(m) when n→ +∞. Then we have

sup
n∈N

V σ(mn) ≥ H(mn|e−U ) =

∫
mn(x)

(
logmn(x) + U(x)

)
dx

=

(∫
|x|≤R

+

∫
|x|>R

)
mn(x)

(
logmn(x) + U(x)

)
dx

≥ −cdR
d

e
+ ess inf
|x|≤R

U(x) +

∫
|x|>R

mn(x)
(
logmn(x) + U(x)

)
dx

≥ −cdR
d

e
+ ess inf
|x|≤R

U(x) +

∫
|x|>R

mn(x)
(
logmn(x) + c|x|p

)
dx,

where the second inequality is due to x log x ≥ −e−1 and cd denotes the volume of the
d-dimensional unit ball.

Define Z̃ =
∫
|x|>R exp

(
−c|x|p/2

)
dx and denote by g̃ the probability measure

g̃(dx) =
1|x|>R

Z̃
exp

(
− c

2
|x|p
)
dx

supported on {|x| > R}. Using the fact that the relative entropy is always nonnegative, we
have ∫

|x|>R
mn(x)

(
logmn(x) + c|x|p

)
dx

=

∫
|x|>R

mn(x)

(
logmn(x) +

c

2
|x|p +

c

2
|x|p
)
dx

= H(mn|g̃)− log Z̃

∫
|x|>R

mn(x) dx+
c

2

∫
|x|>R

mn(x)|x|p dx

≥ −|log Z̃|+ c

2

∫
|x|>R

mn(x)|x|p dx.

Combining the two inequalities above, we obtain

c

2

∫
|x|>R

mn(x)|x|p dx ≤ |log Z̃|+ cdR
d

e
− ess inf
|x|<R

U(x) + sup
n∈N

V σ(mn),

which implies

sup
n∈N
‖mn‖pp = sup

n∈N

∫
mn(x)|x|p dx < +∞,

that is, the p-moment of the minimizing sequence is uniformly bounded. So the sequence
(mn)n∈N is tight and mn → m∗ weakly for some m∗ ∈ P(Rd) along a subsequence. Applying
the following lemma, whose proof is postponed, we obtain m∗ ∈ Pp(Rd).

Lemma 13 (“Fatou’s lemma” for weak convergence of measure) Let X be a metric
space, f : X → R+ be nonnegative continuous function and (mn)n∈N be a sequence of
probability measures on X. If mn converges to another probability measure m weakly, then∫

X
f dm ≤ lim inf

n→+∞

∫
X
f dmn.
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Since the relative entropy is weakly lower-semicontinuous, the entropy of m∗ satisfies

H(m∗|g) ≤ lim inf
n→+∞

H(mn|g).

We show the regular part satisfies limn→+∞ F (mn) = F (m∗). Indeed, by the definition of
functional derivative, we have∣∣F (mn)− F (m∗)

∣∣ ≤ ∫ 1

0

∣∣∣∣∫
Rd

δF

δm
(mλ,n, x) (mn −m)(dx)

∣∣∣∣ dλ
where mλ,n := (1− λ)mn + λm. For every λ ∈ [0, 1], we have∣∣∣∣∫

Rd

δF

δm
(mλ,n, x) (mn −m∗)(dx)

∣∣∣∣
≤
∣∣∣∣∫

Rd

δF

δm
(m∗, x) (mn −m∗)(dx)

∣∣∣∣+

∫
Rd

∣∣∣∣ δFδm(mn, x)− δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx).

Since δF
δm(m∗, ·) is a bounded continuous function, the weak convergence mn → m∗ implies

lim
n→+∞

∣∣∣∣∫
Rd

δF

δm
(m∗, x) (mn −m∗)(dx)

∣∣∣∣ = 0.

It remains to show the second term also converges to 0. Since the convergence δF
δm(mn, x)→

δF
δm(m∗, x) is uniform for |x| < R for every R > 0, we have

lim
n→+∞

∫
|x|≤R

∣∣∣∣ δFδm(mn, x)− δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx) = 0.

Consequently,

lim sup
n→+∞

∫
Rd

∣∣∣∣ δFδm(mn, x)− δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx)

= lim sup
n→+∞

(∫
|x|≤R

+

∫
|x|>R

)∣∣∣∣ δFδm(mn, x)− δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx)

≤ lim sup
n→+∞

∫
|x|>R

∣∣∣∣ δFδm(mn, x)− δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx)

≤MF lim sup
n→+∞

∫
|x|>R

(mn +m∗)(dx)

= MF lim sup
n→+∞

(
m∗({|x| > R}) +mn({|x| > R})

)
= 0

by tightness of the sequence (mn)n∈N. Finally, using the boundedness∣∣∣∣∫
Rd

δF

δm
(mλ,n, x) (mn −m)(dx)

∣∣∣∣ ≤ 2MF ,

we can apply the dominated convergence theorem and show that when n→ +∞,∫ 1

0

∣∣∣∣∫
Rd

δF

δm
(mλ,n, x) (mn −m)(dx)

∣∣∣∣ dλ→ 0.
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Summing up, we have obtained a measure m∗ ∈ Pp(Rd) such that

V σ(m∗) = F (m∗) +
σ2

2
H(m∗)

≤ lim inf
n→+∞

F (mn) +
σ2

2
H(mn) = lim inf

n→+∞
V σ(mn) = inf

m∈P(Rd)
V σ(m).

This completes the proof.

Proof of Lemma 13 By the construction of Lebesgue integral, for every positive measure
µ ∈ P(X), we have ∫

X
f dµ = sup

M≥0

∫
X
f ∧M dµ.

Therefore,∫
X
f dm = sup

M≥0

∫
X
f ∧M dm = sup

M≥0
lim inf
n→+∞

∫
X
f ∧M dmn = sup

M≥0
sup
n

inf
k>n

∫
X
f ∧M dmk

≤ sup
n

inf
k>n

sup
M≥0

∫
X
f ∧M dmk = lim inf

n→+∞
sup
M≥0

∫
X
f ∧M dmn = lim inf

n→+∞

∫
X
f dmn,

where the inequality is due to sup inf ≤ inf sup.

5.2 Proof of Proposition 7

We prove several technical results before proceeding to the proof of Proposition 7.

Proposition 14 Suppose Assumption 1 holds. For every m ∈ Pp(Rd), the measure m̂
determined by

m̂ =
1

Zm
exp

(
− δF
δm

(m,x)− U(x)

)
, (20)

where Zm is the normalization constant, is well defined and belongs to Pp(Rd). Moreover,
there exists constants c, C with 0 < c < 1 < C < +∞ such that for every m ∈ Pp(Rd) and
every x ∈ Rd,

ce−U(x) ≤ m̂(x) ≤ Ce−U(x), (21)

Finally, there exists a constant L > 0 such that for every m, m′ ∈ Pp(Rd) and every x ∈ Rd,

|m̂(x)− m̂′(x)| ≤ LWp(m,m
′)e−U(x). (22)

Proof Using (11), we have

exp

(
− 2

σ2
MF − U(x)

)
≤ exp

(
− 2

σ2

δF

δm
(m,x)− U(x)

)
≤ exp

(
2

σ2
MF − U(x)

)
, (23)
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and

exp

(
−2MF

σ2

)
Z0

=

∫
Rd

exp

(
− 2

σ2
MF − U(x)

)
dx ≤ Zm ≤

∫
Rd

exp

(
2

σ2
MF − U(x)

)
dx

= exp

(
2MF

σ2

)
Z0, (24)

Thus m̂ is well defined and (21) holds with constant C = c−1 = exp
(
4MFσ

−2
)
. Conse-

quently, ∫
Rd
|x|p m̂(dx) ≤

∫
Rd
|x|pm̂(x) dx ≤

∫
Rd
|x|pCe−U(x) dx < +∞,

that is, m̂ ∈ Pp(Rd).
Meanwhile, using the elementary inequality |ex − ey| ≤ ex∨y|x− y|, we have∣∣∣∣exp

(
− 2

σ2

δF

δm
(m,x)− U(x)

)
− exp

(
− 2

σ2

δF

δm
(m′, x)− U(x)

)∣∣∣∣
≤ 2

σ2
exp

(
2MF

σ2

)
Wp(m,m

′) exp
(
−U(x)

)
.

Integrating the previous inequality with respect to x, we obtain

|Z − Z ′| ≤ 2

σ2
exp

(
2MF

σ2

)
Wp(m,m

′)Z0.

Using the bounds (23) and (24), we obtain the Lipschitz continuity (22).

The Lipschitz continuity (22) implies the Hölder continuity of m 7→ m̂.

Corollary 15 Suppose Assumption 1 holds. Then the mapping Φ : Pp(Rd) → Pp(Rd) is
1/p-Hölder continuous.

Before proving the corollary we show a lemma bounding the Wasserstein (coupling) dis-
tance between two probability measures by the L∞ distance between their density functions.

Lemma 16 Let (X, d) be a metric space and µ be a Borel probability measure on X. Con-
sider the space of positive integrable functions with respect to µ,

L∞+,1(µ) :=

{
f : X → R Borel measurable : f ≥ 0,

∫
f dµ = 1

}
.

Equip L∞+,1(µ) with the usual L∞ distance. Suppose for some p ≥ 1 and some x0 ∈ X, we
have Cµ,p :=

∫
X d(x, x0)p µ(dx) < +∞. Then there exists a constant Lµ,p > 0 such that for

every f , g ∈ L∞+,1(µ),

Wp(f µ, g µ) ≤ Lµ,p‖f − g‖1/pL∞ ,

where f µ is the probability measure determined by (f µ)(A) :=
∫
A f dµ and similarily for g.
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Proof Construct the following coupling π between f µ, g µ:

π := π1 + π2,

π1(dx dy) := (f ∧ g)(x)µ∆(dx dy),

π2(dx dy) :=

(∫
(f − g)+(x)µ(dx)

)−1

(f − g)+(x)(g − f)+(y)µ(dx)µ(dy).

Here µ∆ is the measure supported on the diagonal ∆ := {(x, x) : x ∈ X} ⊂ X × X such
that µ∆(A× A) = µ(A). One readily verifies that the projection mappings to the first and
second variables, denoted by X, Y respectively, satisfy

X#π1 = Y#π1 = (f ∧ g)µ,

X#π2 = (f − g)+ µ,

Y#π2 = (g − f)+ µ

Hence X#π = f µ, Y#π = g µ and π is indeed a coupling between f µ, g µ.
By the definition of Wasserstein distance, we obtain

Wp(f µ, g µ)p ≤
∫
X×X

d(x, y)pπ1 (dx dy) +

∫
X×X

d(x, y)pπ2 (dx dy)

=

(∫
(f − g)+ µ

)−1 ∫
X×X

(f − g)+(x)(g − f)+(y)d(x, y)p µ(dx)µ(dy).

Using triangle inequality d(x, y)p ≤ Cp
(
d(x, x0)p + d(y, x0)p

)
and exchanging x, y, the last

term is again bounded by(∫
(f − g)+ µ

)−1 ∫
X×X

Cp
(
d(x, x0)p + d(y, x0)p

)
(f − g)+(x)(g − f)+(y)µ(dx)µ(dy)

=
Cp∫

(f − g)+ µ

∫
X×X

d(x, x0)p
[
(f − g)+(x)(g − f)+(y)

+ (g − f)+(x)(f − g)+(y)

]
µ(dx)µ(dy)

= Cp

∫
X
d(x, x0)p|f − g|(x)µ(dx) ≤ CpCµ,p‖f − g‖L∞ .

The Hölder constant is then given by Lµ,p = (CpCµ,p)
1/p.

Remark 17 The Hölder exponent 1/p in the inequality is sharp. Consider the example:
µ = Leb[0,1], f = (1 + ε)1[0, 12) + (1− ε)1[ 12 ,1]

, g = (1− ε)1[0, 1
2

) + (1 + ε)1[ 12 ,1]
. Then the Wp

distance between fµ, gµ is of order ε1/p when ε→ 0.

Proof of Corollary 15 Applying Lemma 16 with µ(dx) = e−U(x) dx, we obtain

Wp(m̂1, m̂2) ≤ L
∥∥∥∥ m̂1(x)

e−U(x)
− m̂2(x)

e−U(x)

∥∥∥∥1/p

L∞
,
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while by (22) we have ∥∥∥∥ m̂1(x)

e−U(x)
− m̂2(x)

e−U(x)

∥∥∥∥
L∞
≤ LWp(m1,m2).

The Hölder continuity follows.

Proof of Proposition 7 Existence. We will use Schauder’s fixed point theorem. To
this end, fix T > 0, let m0 ∈ Pp be the initial value and denote X = C([0, T ];Wp). Let
T : X → X be the mapping determined by

T[m]t :=

∫ t

0
αe−α(t−s) m̂s ds+ e−αtm0 =

∫ t

0
αe−α(t−s) Φ(ms) ds+ e−αtm0, t ∈ [0, T ].

(25)
We verify indeed T[m] ∈ X, i.e. T[m]t ∈ Pp for every t ∈ [0, T ], and t 7→ T[m]t is continuous
with respect toWp. This first claim follows from the fact that T[m]t is a convex combination
of elements in Pp, as we have shown m̂s = Φ(ms) ∈ Pp(Rd). The second claim follows from

Wp(T[m]t+δ,T[m]t)
p ≤ α

∫ δ

0
e−α(δ−s)Wp(m̂s,mt)

p ds

≤ C(1− e−αδ)
(
supm̂∈Im ΦMp(m̂) +Mp(T[m]t)

)
. (26)

Next we show the compactness of the mapping T. Setting t = 0 in the previous equation
and letting δ vary in [0, T ], we obtain

sup
m∈X

sup
t∈[0,T ]

Mp

(
T[m]t

)
≤ C.

Plugging this back to (26), we have

sup
m∈X,0≤t<t+δ≤T

Wp

(
T[m]t+δ,T[m]t

)
≤ Cδ1/p. (27)

From (11) one knows that Im Φ forms a precompact set in Pp, and since Xt := {T[m]t : m ∈
X} lies in the convex combination of Im Φ and {m0}, Xt is also precompact. Then by the
Arzelà–Ascoli theorem, ImT = T[X] is a precompact set. In other words, T is a compact
mapping. We use Schauder’s theorem to conclude that T admits a fixed point, i.e. (16)
admits at least one solution in X.

Wellposedness when p = 1. The mapping Φ is Lipschitz in this case. The wellposedness
follows from standard Picard–Lipschitz arguments.

Pointwise solution. By definition, m̂t admits the density function

m̂t(x) =
1

Zt
exp

(
− 2

σ2

δF

δm
(mt, x)− U(x)

)
,

where Zt :=
∫
Rd exp

(
− 2
σ2

δF
δm(mt, x) − U(x)

)
dx is the normalization constant. The func-

tional derivative δF
δm(mt, x) is continuous in t by the continuities of t 7→ mt and m 7→

δF
δm(m,x), and is bounded for every t ≥ 0. By the dominated convergence theorem, both
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exp
(
− 2
σ2

δF
δm(mt, x) − U(x)

)
and Zt are continuous in t and bounded. Hence t 7→ m̂t(x)

is continuous and bounded uniformly in x. Suppose now the initial value m0 has density
m0(x). Define the density of mt according to the Duhamel’s formula (25):

mt(x) :=

∫ t

0
αe−α(t−s)m̂s(x) ds+ e−αtm0(x), for x ∈ Rd. (28)

By definition mt(x) defined by (28) is indeed the density of mt solving the time dynamics
(16), and is automatically continuous in t. Since αe−α(t−s)m̂s(x) in (28) is continuous and
bounded in s for every t ≥ 0, the density mt(x) is C1 in t and satisfies the pointwise equality
(17).

We also obtain a density bound that will be used in the following.

Corollary 18 Suppose Assumption 1 holds. There exist constants c, C > 0, depending only
on F and U , such that

mt(x) ≥ (1− e−αt)ce−U(x), (29)

mt(x) ≤ (1− e−αt)Ce−U(x) + e−αtm0(x), (30)

for every x ∈ Rd.

Proof For all m̂ ∈ Im Φ, we have

m̂(x) ≥ ce−U(x).

Then by the definition of density (28), we have

mt(x) ≥
∫ t

0
αe−α(t−s)m̂s(x) ds

≥ ce−U(x)

∫ t

0
αe−α(t−s)m̂s(x) ds

= (1− e−αt)ce−U(x).

The proof for the upper bound is similar.

5.3 Proof of Theorem 9

As it is important to our proof of Theorem 9, we single out the derivative in time result in
the following proposition and prove it before tackling the other parts of the theorem.

Proposition 19 Suppose Assumptions 1 and 2 holds, and let (mt)t≥0 be a solution to (16)
in Wp. Then for every t > 0,

dV σ(mt)

dt
= −ασ

2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
. (31)
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Before proving the proposition, we show a lemma on the uniform integrability of mt and
m̂t.

Lemma 20 Fix s > 0. Under the conditions of the previous proposition, there exist inte-
grable functions f , g such that for every t ∈ [s,+∞) and every x ∈ Rd,

g(x) ≤ log
mt(x)

e−U(x)

(
m̂t(x)−mt(x)

)
≤ f(x).

Proof We first deal with the first term log mt(x)

e−U(x) m̂t(x). Using the bounds (29), (30) we
have

log
mt(x)

e−U(x)
m̂t(x) ≥ log

(1− e−αt)ce−U(x)

e−U(x)
m̂t(x) = log

(
(1− e−αt)c

)
m̂t(x)

≥ log
(
(1− e−αs

)
c)m̂t(x) ≥ log

(
(1− e−αs)c

)
Ce−U(x) =: g1(x).

Here we shrink the constant c if necessary so that c < 1 and in the last inequality the
coefficient log

(
(1− e−αs)c

)
is negative. Now we upper bound log mt(x)

e−U(x) m̂t(x). We have

log
mt(x)

e−U(x)
≤ log

(
e−αt

m0(x)

e−U(x)
+

∫ t

0
αe−α(t−s) m̂s(x)

e−U(x)
ds

)
≤ log

(
e−αt

m0(x)

e−U(x)
+ C

∫ t

0
αe−α(t−s) ds

)
= log

(
e−αt

m0(x)

e−U(x)
+ C(1− e−αt)

)
≤ log

(
(1− e−αt)C

)
+

e−αt

C(1− e−αt)
m0(x)

e−U(x)
≤ logC + Cs

m0(x)

e−U(x)
.

Here in the third inequality we used the elementary inequality log(x + y) ≤ log x + y
x for

real x, y, and in the last line we maximize over t ≥ s and set Cs = e−αs
(
C(1 − e−αs)

)−1.
Therefore,

log
mt(x)

e−U(x)
m̂t(x) ≤

(
logC + Cs

m0(x)

e−U(x)

)
m̂t(x) ≤

(
logC + Cs

m0(x)

e−U(x)

)
Ce−U(x)

= logC · Ce−U(x) + CsCm0(x) =: f1(x).

Now consider the second term log mt(x)

e−U(x)mt(x). Applying Jensen’s inequality to the
Duhamel formula (28), we have

log
mt(x)

e−U(x)
mt(x) ≤ e−αt log

m0(x)

e−U(x)
m0(x) +

∫ t

0
αe−α(t−s) log

m̂s(x)

e−U(x)
m̂s(x) dt

≤ e−αt log
m0(x)

e−U(x)
m0(x) +

∫ t

0
αe−α(t−s) logC · m̂s(x) dt

≤ e−αt log
m0(x)

e−U(x)
m0(x) +

∫ t

0
αe−α(t−s) logC · Ce−U(x) dt

≤
(

log
m0(x)

e−U(x)
m0(x)

)
+

+ logC · Ce−U(x) =: −g2(x)
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In the second and third inequality we use consecutively the bound m̂(x) ≤ Ce−U(x) with
C > 1. For the lower bound of the second term we note

log
mt(x)

e−U(x)
mt(x) = log

mt(x)

e−U(x)
· mt(x)

e−U(x)
e−U(x) ≥ −1

e
e−U(x) =: −f2(x)

The proof is complete by letting f = f1 + f2 and g = g1 + g2.

Proof of Proposition 19 Thanks to the lemma above, we can apply the dominated
convergence theorem to differentiate t 7→ V σ(mt) and obtain

dH(mt)

dt
= α

∫
Rd

(
logmt(x) + U(x)

)(
m̂t(x)−mt(x)

)
dx.

For the regular term F (mt), by the definition of functional derivative, we have

F (mt+δ)− F (mt) =

∫ 1

0

∫
Rd

δF

δm
(mt+uδ, x)

(
mt+δ(x)−mt(x)

)
dx du.

Applying again the dominated convergence theorem, the derivative reads

dV σ(mt)

dt
= α

∫
Rd

(
δF

δm
(mt, x) +

σ2

2
logmt(x) +

σ2

2
U(x)

)(
m̂t(x)−mt(x)

)
dx

= α

∫
Rd

(
Ct +

σ2

2
logmt(x)− σ2

2
log m̂t(x)

)(
m̂t(x)−mt(x)

)
dx

= α

∫
Rd

(
σ2

2
logmt(x)− σ2

2
log m̂t(x)

)(
m̂t(x)−mt(x)

)
dx

= −ασ
2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
,

where in the second line we use the first-order condition for m̂t and Ct is a constant that
may depend on t.

Remark 21 The result of Proposition 19 implies

•
∫ +∞

0

(
H(mt|m̂t) +H(m̂t|mt)

)
dt < +∞;

• The derivative dV σ(mt)
dt vanishes if and only if mt = m̂t, i.e. the dynamics reaches a

stationary point.

Proof of Theorem 9 Our strategy of proof is as follows. First we show that, by the (pre-
)compactness of the flow (mt)t≥0 in a suitable Wasserstein space, the flow converges up to
an extraction of subsequence. Then we prove by a monotonicity argument the convergence
holds true without extraction. Finally we study the convergence of the density functions
and prove the convergence of value function by the dominated convergence theorem.
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According to the Duhamel’s formula (25), the measure mt is a (weighted) linear com-
bination of the initial value m0 and the best responses m̂s. Since there exists some p′ > p
such that m0 ∈ Pp′(Rd), we obtain by the triangle inequality

‖mt‖p
′

p′ ≤ e
−αt‖m0‖p

′

p′ + (1− e−αt) sup
0≤s≤t

‖m̂s‖p
′

p′

≤ ‖m0‖p
′

p′ + sup
m∈Pp(Rd)

‖Φ(m)‖p
′

p′ ≤ ‖m0‖p
′

p′ + C

∫
Rd
xp
′
e−U(x) dx.

Thus the flow (mt)t≥0 in precompact in Pp(Rd) and the set of limit points,

w(m0) := {m ∈ Pp(Rd) : ∃tn → +∞ such that mtn → m},

is nonempty. We now show that w(m0) is the singleton {m∗} and therefore mt → m∗ in
Wp. Pick m ∈ w(m0) and let (tn)n∈N be an increasing sequence such that tn → +∞ and
mtn → m. Extracting a subsequence if necessary, we may suppose tn+1 − tn ≥ 1 for n ∈ N.
Proposition 19 implies for every t, s such that t > s ≥ 0,

V σ(ms)− V σ(mt) =

∫ t

s

(
H(mu|m̂u) +H(m̂u|mu)

)
du.

Consequently,

V σ(m0) ≥ V σ(mt0)− V σ(mtn)

≥
n−1∑
k=0

∫ tk+1

tk

(
H(mu|m̂u) +H(m̂u|mu)

)
du

≥
n−1∑
k=0

∫ 1

0

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du.

By taking n→ +∞, we obtain

n−1∑
k=0

∫ 1

0

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du < +∞.

Therefore,

0 = lim
k→+∞

∫ 1

0

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du

≥
∫ 1

0
lim inf
k→+∞

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du

=

∫ 1

0
lim inf
k→+∞

(
H
(
S[u]mtk

∣∣Φ(S[u]mtk)
)

+H
(
Φ(S[u]mtk)

∣∣S[u]mtk

))
du

=

∫ 1

0

(
H
(
S[u]m

∣∣Φ(S[u]m)
)

+H
(
Φ(S[u]m)

∣∣S[u]m
))
du.

25



Chen, Ren and Wang

In the first inequality we applied Fatou’s lemma, and in the last equality we used the
convergence mtk → m, the continuity of S[u] and Φ, and the joint lower-semicontinuity of
(µ, ν) 7→ H(µ|ν) with respect to the weak convergence of measures. Then we have

H
(
S[u]m

∣∣Φ(S[u]m)
)

+H
(
Φ(S[u]m)

∣∣S[u]m
)

= 0

for a.e. u ∈ [0, 1]. Using again the lower-semicontinuity of relative entropy, we obtain

H
(
m
∣∣Φ(m)

)
+H

(
Φ(m)

∣∣m) ≤ lim inf
u→0

(
H
(
S[u]m

∣∣Φ(S[u]m)
)

+H
(
Φ(S[u]m)

∣∣S[u]m
))

= 0.

That is to say, as a probability measure m = Φ(m) = m̂. By our assumption Φ has unique
fixed point m∗, therefore m = m∗ and w(m0) is equal to the singleton {m∗}.

Next we show that the convergence of the density function mt(·) → m∗(·). Since
σ2

2 H(m∗) ≤ V σ(m∗) < +∞, the measure m∗ has a density function, which we denote
by m∗(·). The Duhamel’s formula for density functions (28) yields

∣∣mt(x)−m∗(x)
∣∣ ≤ e−αt∣∣m0(x)−m∗(x)

∣∣+

∫ t

0
αe−α(t−s)∣∣m̂s(x)−m∗(x)

∣∣ ds
≤ e−αt

∣∣m0(x)−m∗(x)
∣∣+

∫ t

0
αe−α(t−s)LWp(m̂s,m

∗)e−U(x) ds

= e−αt
∣∣m0(x)−m∗(x)

∣∣+

∫ t

0
αe−αsLWp(m̂t−s,m

∗)e−U(x) ds

= e−αt
∣∣m0(x)−m∗(x)

∣∣+

∫ +∞

0
1s≤tαe

−αsLWp(m̂t−s,m
∗)e−U(x) ds.

The integrand in the last integral is positive and upper-bounded by the integrable function

1s≤tαe
−αsLWp(m̂t−s,m

∗)e−U(x) ≤ αL sup
t≥0
Wp(m̂t,m

∗)e−αse−U(x),

where supt≥0Wp(m̂t,m
∗) < +∞ because (mt)t≥0 is a continuous and convergent flow in Pp.

Hence by the dominated convergence theorem,

lim
t→+∞

∫ +∞

0
1s≤tαe

−αsLWp(m̂t−s,m
∗)e−U(x) ds

=

∫ +∞

0
lim

t→+∞
1s≤tαe

−αsLWp(m̂t−s,m
∗)e−U(x) ds = 0,

where lims→+∞Wp(m̂s,m
∗) = lims→+∞Wp

(
Φ(ms),m

∗) = 0 since ms → m∗ and Φ is
continuous. As a result, mt(x)→ m∗(x) when t→ +∞. We finally show the convergence of
the value function. Note that, as in the proof of Proposition 19, the entropic term is doubly
bounded by integrable functions

−f2(x) ≤ mt(x) log
mt(x)

e−U(x)
≤ −g2(x).
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Applying the dominated convergence theorem, we obtain

lim
t→+∞

H(mt) = lim
t→+∞

∫
Rd
mt(x) log

mt(x)

e−U(x)
dx =

∫
Rd

lim
t→+∞

mt(x) log
mt(x)

e−U(x)
dx

=

∫
Rd
m∗(x) log

m∗(x)

e−U(x)
dx = H(m∗).

The convergence in Wasserstein distance implies already F (mt) → F (m∗). Therefore
limt→+∞ V

σ(mt) = V σ(m∗).

5.4 Proof of Theorem 10

We again show some technical results before moving on to the proof of the theorem.

Lemma 22 Suppose Assumptions 1 and 2 holds, and let mt be a solution to (16). For every
t > 0, we have

0 ≤
∫
Rd
m̂t+δ(x)

(
log m̂t+δ(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫
Rd
m̂t(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx = O(δ1/p)

when δ → 0.

Proof Denote the quantity to bound by I. We write it as the sum of the following two
terms:

I = I1 + I2,

I1 =

∫
Rd

(
2

σ2

δF

δm
(mt, x) + log m̂t(x) + U(x)

)(
m̂t+δ(x)− m̂t(x)

)
dx = 0,

I2 =

∫
Rd

(
log m̂t+δ(x)− log m̂t(x)

)
m̂t+δ(x) dx.

The term I1 is zero because 2
σ2

δF
δm(mt, x)+log m̂t(x) is constant by the first-order condition.

On the other hand, we have I2 = H(m̂t+δ|m̂t) ≥ 0. Let us bound the other side. Since
m̂s(x) ≥ ce−U(x) holds for every s ≥ 0, we have∣∣log m̂t+δ(x)− log m̂t(x)

∣∣m̂t+δ(x) ≤ m̂(x)

min
{
m̂t+δ(x), m̂t(x)

}(mt+δ(x)− m̂t(x)
)

≤ C
(
m̂t+δ(x)− m̂t(x)

)
≤ Ce−U(x)Wp(mt+δ,mt)

≤ Ce−U(x)δ1/p.

Here we have used log x
y ≤

|x−y|
min{x,y} in the first inequality, (22) in the second inequality, and

(27) in the last inequality.

We need the following notion to treat the possibly non-differentiable relative entropy.
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Definition 23 For a real function f : (t− ε, t+ ε)→ R defined on a neighborhood of t, the
set of its upper-differentials at t is

D+f(t) :=

{
p ∈ R : lim sup

s→t

f(s)− f(t)− p(s− t)
|s− t|

≤ 0

}
.

Lower-differentials are defined as D−f(t) := −D+(−f)(t).

Lemma 24 Let f : [a, b] → R be a function defined on a closed interval, continuous on its
two ends a and b. If f has nonnegative lower-differentials on (a, b), i.e. for every a < t < b
there exists pt ∈ D−f(t) with pt ≥ 0, then f(b) ≥ f(a).

Proof Since the interval [a, b] is compact, for every ε > 0, we can find a finite sequence
a < x1 < . . . < xn < b such that f(xi+1) − f(xi) ≥ −ε(xi+1 − xi) with x1 < a + ε and
b < xn + ε. Thus we have f(xn) − f(x1) ≥ −ε(xn − x1). We conclude by taking the limit
ε→ 0.

Next we calculate the upper-differential of the relative entropy t 7→ H(mt|m̂t).

Proposition 25 Let Assumptions 1, 2 and 3 hold, and let (mt)t≥0 be a solution to (16) in
Wp. Then the relative entropy H : t 7→ H(mt|m̂t) is continuous on [0,+∞), and for every
t > 0, the set of upper differentials D+H(t) is non-empty and there exists pt ∈ D+H(t) such
that

pt ≤ −α
(
H(mt|m̂t) +H(m̂t|mt)

)
.

Proof Fix t > 0. The relative entropy reads

Ht := H(mt|m̂t) =

∫
Rd
mt(x)

(
logmt(x)− log m̂t(x)

)
dx

=

∫
Rd
mt(x)

(
logmt(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫
Rd
mt(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

=

∫
Rd
mt(x)

(
logmt(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫
Rd
m̂t(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

=: H1,t −H2,t.

In the second equality we can separate the integral into two parts because the integrand of
the second term mt(x)

(
log m̂t(x) +U(x) + 2

σ2
δF
δm(m,x)

)
is integrable as it is constant by the

first-order condition. For the same reason, in the fourth equality we can replace mt by m̂t

in the second term, as we are integrating against a constant and mt, m̂t have the same total
mass 1.
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Now we consider the difference Ht+δ −Ht = (H1,t+δ −H1,t) − (H2,t+δ −H2,t). For the
first part we have

H1,t+δ −H1,t = H(mt+δ)−H(mt)

+
2

σ2

∫
Rd

(
mt+δ(x)

δF

δm
(mt+δ, x)−mt(x)

δF

δm
(mt, x)

)
dx.

= δ

∫
Rd
α log

mt(x)

e−U(x)
(m̂t(x)−mt(x)) dx

+
2δ

σ2

∫
Rd
α
(
m̂t(x)−mt(x)

) δF
δm

(mt, x) dx

+
2δ

σ2

∫
Rd

∫
Rd
mt(x)

δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ)

= αδ

∫
Rd

(
logmt(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)(
m̂t(x)−mt(x)

)
dx

+
2δ

σ2

∫
Rd

∫
Rd
mt(x)

δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ).

by Lemma 20 and dominated convergence theorem.
Next we calculate the second part:

H2,t+δ −H2,t =
2

σ2

∫
Rd
m̂t+δ(x)

(
δF

δm
(mt+δ, x)− δF

δm
(mt, x)

)
dx

+

[∫
Rd
m̂t+δ(x)

(
log m̂t+δ(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫
Rd
m̂t(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

]
For the first difference we use the expansion mt+δ −mt = αδ (m̂t −mt) + o(δ) and apply
the dominated convergence theorem to obtain

2

σ2

∫
Rd
m̂t+δ(x)

(
δF

δm
(mt+δ, x)− δF

δm
(mt, x)

)
dx

=
2αδ

σ2

∫
Rd

∫
Rd
m̂t+δ(x)

δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ)

=
2αδ

σ2

∫
Rd

∫
Rd
m̂t(x)

δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ)

and the second difference is already treated in Lemma 22. Summing up, we have

H2,t+δ −H2,t −
2αδ

σ2

∫∫
m̂t(x)

δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy ≥ o(δ)

We have equally the bound on the other side: H2,t+δ −H2,t ≤ O(δ1/p).
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Putting everything together, we have

Ht+δ −Ht ≤ αδ
∫ (

logmt(x) + U(x) +
2

σ2

δF

δm
(mt, x)

)(
m̂t(x)−mt(x)

)
dx

− 2αδ

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy + o(δ)

= αδ

∫
Rd

(
logmt(x)− log m̂t(x)

)(
m̂t(x)−mt(x)

)
dx

− 2αδ

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy + o(δ)

= −αδ
(
H(mt|m̂t) +H(m̂t|mt)

)
− 2αδ

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy + o(δ).

By the convexity of F . the double integral is positive, that is to say∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy ≥ 0.

For the other side we have Ht+δ −Ht ≥ O(δ1/p). Thus Ht is continuous and pt defined by

pt = −α
(
H(mt|m̂t) +H(m̂t|mt)

)
− 2α

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy.

is an upper-differential of H(mt|m̂t) and satisfies pt ≤ −α
(
H(mt|m̂t) +H(m̂t|mt)

)
.

Proof of Theorem 10 By Proposition 19, we know

dV σ(mt)

dt
= −ασ

2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
.

By Proposition 25, we find for every t > 0 an upper-differential pt ∈ D+H(mt|m̂t) such that

pt ≤ −α
(
H(mt|m̂t) +H(m̂t|mt)

)
.

Therefore,
dV σ(mt)

dt
≥ σ2

2
pt.

Since dV σ(mt)
dt − pt is a lower-differential of V σ(mt)−H(mt|m̂t), we apply Lemma 24 to the

finite interval [s, u] and obtain

V σ(mu)− V σ(ms) ≥
σ2

2

(
H(mu|m̂u)−H(ms|m̂s)

)
. (32)

It follows from Proposition 25 and Lemma 24 that t 7→ eαtH(mt|m̂t) is non-increasing, and
therefore,

H(mt|m̂t) ≤ H(m0|m̂0)e−αt.
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Taking the limit u→ +∞ in (32), we obtain

inf V σ − V σ(ms) ≥ 0− σ2

2
H(ms|m̂s) ≥ −

σ2

2
H(ms|m̂s)e

−αt,

and the proof is complete.

6. Conclusion

In this paper we proposed the entropic fictitious play algorithm that solves the mean field
optimization problem regularized by relative entropy. The algorithm is composed of an in-
ner and an outer iteration, sharing the same flavor with the particle dual average algorithm
studied in Nitanda et al. (2021), but possibly allows easier implementations. Under some
general assumptions we rigorously prove the exponential convergence for the outer iteration
and identify the convergence rate as the learning rate α. The inner iteration involves sam-
pling a Gibbs measure and many Monte Carlo algorithms have been extensively studied for
this task, so errors from the inner iterations are not considered in this paper. For further
research directions, we may look into the discrete-time scheme to better understand the
efficiency and the bias of the algorithm, and may also study the annealed entropic fictitious
play (i.e., σ → 0 when t→ +∞) as well.
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