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Abstract

We consider a discrete-time system of n coupled random vectors, a.k.a. interacting particles.
The dynamics involve a vanishing step size, some random centered perturbations, and a mean
vector field which induces the coupling between the particles. We study the doubly asymptotic
regime where both the number of iterations and the number n of particles tend to infinity,
without any constraint on the relative rates of convergence of these two parameters. We
establish that the empirical measure of the interpolated trajectories of the particles converges
in probability, in an ergodic sense, to the set of recurrent Mc-Kean-Vlasov distributions. We
also consider the pointwise convergence of the empirical measures of the particles. A first
application example is the granular media equation, where the particles are shown to converge
to a critical point of the Helmholtz energy. A second example is the convergence of stochastic
gradient descent to the global minimizer of the risk, in a wide two-layer neural networks using
random features.
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1 Introduction

Given two integers n,d > 0, consider the iterative algorithm defined as follows. Starting with the
n-uple (Xg", ..., X;"") of random variables X;™ € R%, the algorithm generates at the iteration
k+1 for k € N the n—uple of R%valued random variables (X,i’", o, XM), referred to as the

particles, according to the dynamics:

R in V41 . in i,n i,n i,n
X =X+ " Zb(Xk ,X;i )+ v 2%e+1801 + 1G4 (1)
j=1
for each i € [n] where [n] := {1,...,n}. In this equation, the function b : R x RY — R? is

a continuous vector field, (y;)r is a vanishing sequence of deterministic positive step sizes, and
((§k )ic[n] ) ken+ and ((Ck )icn] Jken= are R4*"—valued random noise sequences in the time param-

eter k. We assume that for each n, the n—uple (Xé " LX) is exchangeable and that the same
holds for the n—uple of sequences ((fi’n)keN* .. (fZ n)keN*) and ((Ckm)kEN* oo (G ) ken)-
Defining, for each n > 0, the filtration (F})ken as

W= (XM ierm)s (€™ ier)ehs (G sl esh)s (2)

we furthermore assume that for each 7, the sequence ((£5 ")icmn))k is a (Fj)x—martingale increment

sequence i.e., E(52’+1|}'” = 0. Finally, we assume that E(fifl (ka) |Fi) = 0?1;=;1; for some
a2 > 0.
The aim of the paper is to characterize the asymptotic behavior of the empirical measure of

the particles
1 n
== 'E_l (SXi,n (3)

in the regime where both the time index k and the number of particles n tend to infinity (denoted
hereinafter as (k,n) — (00, 00)), without any constraint on the relative rates of convergence of
these two parameters To this end, we consider for each i € [n] the random continuous process
X2 [0,00) — R ¢ XZ "™ defined as the piecewise linear interpolation of the particles (Xk")k.

Specifically, wrltmg
k
Tg = Z v; (4)
j=1

for each k € N, we define:

i, in t—Tk in in
VEE [T Ther), XU = X A —— (Xk7+1 - Xy ) : (5)
+1



The interpolated processes X", for i € [n], are elements of the set C of the [0, 00) — R? continuous
functions, equipped with the topology of uniform convergence on compact intervals. This paper
studies the empirical measure of these processes:

1 n

For each n and each p € [1,2], m” is a random variable on the space Pp(C) of probability measures
on C with a finite p-moment, equipped with the p-Wasserstein metric W,, (precise definitions of
these notions provided below). Our aim is to analyze the convergence in probability, of the shifted
random measures

n 1 -
@t(m ) = E ZéX:f ,
i=1

when both n and ¢ converge to infinity with arbitrary relative rates, where for every m € P,(C),
®,(m) € Pp(C) is defined by ®¢(m)(f) = [ f(x(t+ -))dm(z) for every bounded continuous function
fonC. Under mild assumptions on the vector field b, and some moment assumptions on the iterates
and on the noise sequence (({;")icn)), ensuring that the effect of the latter becomes negligible in
our asymptotic regime, we establish the following result, which we explain hereafter.

Main theorem (informal). The sequence (®.;(m™)) ergodically converges in probability as
(t,n) — (00, 00) to the set of recurrent McKean-Viasov distributions.

Let us explain what the terms McKean-Viasov distribution, recurrent, and ergodic convergence
mean in this paper. Here, a McKean-Vlasov distribution p is defined as the law of a R%-valued pro-
cess (X; : t € R) satisfying the following condition: for every smooth enough compactly supported
function ¢, the process

o(X,) - / L(ps)(6)(X.)ds

is a martingale, where p; the marginal law of X;, and where the linear operator L(p;) associates
to ¢ the function L(p:)(¢) given by:

z = (b(z, pr), Vo(z)) + 0 Ag(z),

where A is the Laplacian, and where we use the slightly abusive notation b(z, p¢) := [ b(x, y)dp:(y).

A McKean-Vlasov distribution p is said recurrent if, for some sequence (tx) — oo, p =
limy o0 @1, (p). The W,-closure of the set of recurrent McKean-Vlasov distributions will be re-
ferred to as the Birkhoff center, and denoted by BC, following the terminology used for general
dynamical systems.

By ergodic convergence, we refer to the fact that the time-averaged Wasserstein distance between
the measures ®,(m™) and the Birkhoff center converges to zero. Our main theorem can thus be
written more precisely:

t
1/ W, (®5(m™),BC)ds ———— 0, in probability.
t 0 (t,n)—(00,00)
The Birkhoff center can be characterized in a useful way, provided that one is able to show the
existence of a Lyapunov function, namely a function F' on Pp(C) such that, for every McKean-
Vlasov distribution p, F(®:(p)) is non-increasing in the variable t. Indeed, in such a situation,
the Birkhoff center is included in the subset A of McKean-Vlasov distributions which satisfy the
property that t — F(®:(p)) is constant whenever p € A.

Finally, in the case where the McKean-Vlasov dynamics can be cast in the form of a gradient
flow in the space of measures P, (R%), and in case this gradient flow has a global attractor Ap, we
show that

W, (pi, Ay) —— 0 in probability.
(k,n)—(c0,00)

To illustrate our results, we provide two important examples of McKean-Vlasov distribution

where these results can be applied.

Granular media. Our first example is in P2(C) and corresponds to the scenario where the vector
field b takes the form:



where V and U denote two real differentiable functions on R¢, whose gradients satisfy some
linear growth condition. In this case, a Lyapunov function exists, which can be expressed
as a function of the so-called Helmholtz energy. As a consequence of our main result, we
establish that, when o > 0, the empirical measures (u}!) converge ergodically in probability
as (k,n) — (00, 00) to the set S of critical points of the Helmholtz energy, namely:

k n
> Wa(ug, S)
S (k) =(00,00)

0, in probability.

where, this time, W5 represents the classical Wasserstein distance, and where S is the set of
probability measures x4 on R? which admit a second order moment and a density du/d.Z¢
w.r.t. the Lebesgue measure, and such that:

VV(z) + /VU(ac —y)du(y) + o*V log d(j;d (x) =0,

for p-almost every x. Our result holds under mild assumptions, and does not require the
rather classical strong convexity or doubling conditions on U and/or V.

Stochastic gradient descent (SGD) in two layer neural networks. Another archetypal ex-
ample where a useful Lyapunov function exists is encountered in the field of Machine Learn-
ing, when studying the convergence of the popular SGD algorithm. As an illustration, we
consider the problem of optimizing the coefficients of the output layer of a two layer network,
assuming that the coefficients of the first/hidden layer are sampled, once for all, from a given
iid distribution. This scenario is known as the random features setting. It captures the
asymptotic regime of networks where the width n of the hidden layer goes to infinity, and
the ability of the network to reach near perfect reconstruction of a target function, under
some hypotheses. More specifically, the output of the neural network for an arbitrary input
x of dimension ¢ is assumed to have the form:

n

1 , )
hasaswg) = £ Y gl uf).

i=1

where n is the number of neurons at the output of the hidden layer, a = (a!,...,a") are the

coefficients of the output layer, wo = (wy™, ..., wy™) are (random but fixed) R4 !-vectors
of the hidden layer, and ¢ is a real bounded continuous function. We consider the regularized
risk minimization problem:

iy [ (i, wf) — 9 dv(o.) + 5 al?. g
acR™ n

where v is a probability measure on R? x R, and where A > 0 is a regularization parameter.
We assume that the distribution v is unknown by the observer, but that iid random samples
(7,1, Yiy1 ) )ken with distribution v are revealed during the iterations of the algorithm. For a
fixed n and a learning rate set to nyx, the SGD iterations generate a sequence (a,lc’", o ar™)
of random variables. Defining the particles as X" := (al™, wg™) for each i € [n], it turns
out that the SGD iterations can casted into the form of Eq. (), for a well chosen vector field
b. In this case, the variables ( ;fl, ., (") of Eq. (@) are centered random perturbations
whose first components represent the difference between the stochastic gradient derived from
the new sample (z}/,,,y}, ) and the true gradient of the objective (@). Potentially, we also
include the case where a random additive noise of variance o2, scaled by v/27%, is artificially

added at each iteration to each of the variables (a,lc’”, ...,a;"), in the flavor of a Langevin
algorithm. We establish that a Lyapunov function exists, which is built upon the map R,
given by:

Ro(p) = %/ (/aso(fc,w)du(a,w) —y)QdV(w,y) +%/a2du(a,w)
ro? 1o (%20 ) dutaw).



for every probability x on R x R4~! which admits second order moments. Here, u(da|w)
is the conditional distribution obtained from the disintegration of p w.r.t. its marginal
in the variable w, and % represents its density w.r.t. the Lebesgue measure on R
(setting R, (1) = +o0o when no such density exist). Specifically, a Lyapunov function can
be expressed as the function which, to every McKean-Vlasov distribution, associates the
value Ry (pe) for an arbitrary e > 0. By further studying the subset A of McKean-Vlasov
distributions on which this Lyapunov function is constant, we obtain our main corollary.
Given some prescribed distribution w for the fixed parameters wy ", the empirical measure
pp of the points (aé’",wé’") for i € [n], converges ergodically in probability to the unique
minimizer of the risk R, (u) among all probability measures p with the prescribed marginal
p(- x R = .

Contributions. Compared to existing works, our contributions are threefold. First, our
results hold under mild assumptions on the vector field b aside from continuity and linear growth,
whereas most of the existing works (see below) rely on stronger conditions, such as Lipschitz,
doubling or even global boundedness conditions. Second, we address the case of discrete-time
systems with a step size vanishing arbitrarily slowly towards 0, whereas the continuous time model
is more often considered in the literature. Discrete-time algorithms are important in applications,
such as neural networks, transformers, MonteCarlo simulations or numerical solvers. In particular,
stability results are more difficult to establish in this setting. Finally, our result focuses on a double
limit (k,n) — (00, 00). At the exception of some papers listed below, the results of the same kind
generally consider the case, where the time window is fixed, while the number of particles grows
to infinity, ignoring long time convergence, or assume certain constraints on the relative rate of
convergence of the two variables.

About the literature. The first results addressing the limiting behavior of a finite system
of particles are provided in the context of the propagation of chaos. These findings are discussed
in detail in [CD22]. Such results have broad applicability across a variety of particle systems,
where the interacting term b can manifest in various forms [MRC87, [Oel84] [Szn84) [ELL21]. In
our case, if we set aside the transition from continuous to discrete time, such results typically
establish the convergence to zero of the expectation of the squared Wasserstein distance between
the empirical measure of the particles, over some fixed time interval [0, 7], and a McKean-Vlasov
distribution with the same initial measure. Under classical assumptions, this convergence occurs
at a rate of 1/n, where n is the number of particles, but with a constant that grows exponentially
with 7. This type of result performs poorly in the long run, making the achievement of the
double limit in both time and the number of particles unattainable. By imposing additional
assumptions, [Mal01l BGM10, [CGMO0S8, BRTV98, [DEGZ20] derive a bound that is uniform in
time, thereby explicitly addressing the double asymptotic regime. However, these works require
strong assumptions on the vector field b. For instance, as highlighted in [DMT19], achieving
uniform propagation of chaos over time is only possible when a unique McKean-Vlasov stationary
distribution exists, a condition that [Tugl3| has demonstrated is not always met. In this regard, our
assumptions are weaker, allowing the existence of multiple stationary distributions. It is noteworthy
that the study of McKean-Vlasov stationary distributions in cases where the uniqueness of such
distributions does not hold remains an open area of research. For instance, [Cor23] explore the
stability of stationary distributions.

Few works address discrete-time particle systems. The paper [Mal03] employs an implicit
Euler scheme for the granular media case, assuming that the potential function is zero and the
interaction is strongly convex. The contribution of the paper [Ver06] is the closest to the present
one, as it considers an equation very close to Eq. (). However, this paper assumes that b is globally
bounded. Moreover, it does not address the convergence in probability of the empirical measure of
the particles but rather the convergence of its expectation. Lastly, another paper closely related
to our work is [BS00]. This paper is not specific to the case of McKean-Vlasov processes. In
particular, it does not consider a system of particles and does not address double limits. However,
it establishes, in the same spirit as ours, the ergodic convergence of the empirical measure of a
so-called weak asymptotic pseudotrajectory to the Birkhoff center of a flow on a metric space.

Finally, let us review some applications of our model. Particle systems have historically been
motivated by statistical physics. However, in recent decades, they have found utility in various
models including neural networks, Markov Chain Monte Carlo theory, mathematical biology, and
mean fields game, among others. A well-known model in statistical physics is granular media



[Vil06]. This model has been extensively studied due to its property of being a gradient system,
and the uniform propagation of chaos over time works well within this model. It can also be
described by a gradient flow [AGS08]. In Markov Chain Monte Carlo theory, the Stein Variational
Gradient Descent estimates a target distribution using a particle system [LW16, [SSR22], and
the convergence of this algorithm remains an open question. Wide Neural Networks can also be
represented by particle systems. A convergence result to the minimizers of the risk is attainable
when both time and the number of particles tend to infinity [CB18]. Here, the authors establish
convergence to gradient descent in continuous time and in the double asymptotic regime. The
paper [MMNTI8] establishes the convergence of noisy stochastic gradient descent when the number
of iterations depends on the number of particles. See also [RVE22| [SS20] for related works. The
case where the parameters of the hidden layer are random but fixed along the optimization process
is also known as the random features model [RR07, [CRR1S)].

2 The setting

We begin by introducing some notations and by recalling some definitions.

2.1 Notations
2.1.1 General notations

We denote by (-,-) and || - || the inner product and the corresponding norm in a Euclidean space.
We use the same notation in an infinite dimensional space, to denote the standard dual pairing
and the operator norm.

For k € NU {oo}, we denote by C*(R?%,RY) the set of functions which are continuously differ-
entiable up to the order k. We denote by C.(R% R) the set of R? — R continuous functions with
compact support. Given p € N* U {oc}, we denote as CP(R?, R) the set of compactly supported
R? — R functions which are continuously differentiable up to the order p.

We denote by C the set of the [0,00) — R? continuous functions. It is well-known that the
space C endowed with the topology of the uniform convergence on the compact intervals of [0, c0)
is a Polish space.

2.1.2 Random variables

The notation fu stands for the pushforward of the measure p by the map f, that is, fuu = pof=1.
For t > 0, we define the projections m; and g as m : (Rd)[o"’o) — R% 2+ x; and o,
(R:20) — (RO (2, : u € [0,1]).
Let p > 1. For p € P,(C), we denote

pr = (m)up.

Let (Q, F,P) be a probability space. We say that a collection A of random variables on  — F
is tight in E, if the family {X 4P : X € A} is weak-relatively compact in P(E) i.e., has a weakx
compact closure in P(E).

We say that a n—uple of random variables (X1,...,X,) is exchangeable, if its distribution is
invariant by any permutation on [n].

Let T represent either N or [0, +00). Let (U : t € T,n € N) be a collection of random variables
on a metric space (F,d). We say that (U}*) converges in probability to U as (t,n) — (00, 00)
if, for every ¢ > 0, the net (P(d(U*,U) > €) : t € T,n € N) converges to zero as t and n both

P

converge to co. We denote this by U;* U. Moreover, assuming that the collection of

(t,m)—(00,00)
random variables (U : t € T,n € N) are real valued, we say that the latter collection is uniformly
integrable if:
lim sup E||U}| 1jyn =0.
a0 €T, ,neN* [| 3 e ‘>a]

Finally, for any d € N*, #? stands for the Lebesgue measure on R



2.2 Spaces of probability measures

Let (E,d) denote a Polish space. If A C E is a subset, we define d(z,.A) := inf{d(z,y) : y € A},
with inf ) = co. We say that a net (uq) converges to A if d(zq,.A) —4 0.

We denote by P(E) the set of probability measures on the Borel o-algebra B(F). We equip
P(E) with the weak* topology. Note that P(E) is a Polish space. We denote by dj, the Levy-
Prokhorov distance on P(E), which is compatible with the weakx topology. We define the intensity
of a random variable p : @ — P(FE), as the measure I(p) € P(E) that satisfies

VAEF, I(p)(4) =E(p(4)).

Lemma 1 ([MRCS87]). A sequence (py) of random variables on P(E) is tight if and only if the
sequence (I(py)) is weakx-relatively compact.

Let p > 1. If FE is a Banach space, we define

Pu(E)i= {n e P(E) 5 [ lallPdu(z) < oo},

We define the Wasserstein distance of order p on P,(E) by

Wy (i) = ( wt [l ynpdc(x,y)) " ®)

c€Il(p,v)

where II(u, v) is the set of measures ¢ € P(E x E), such that ¢(- x E) = pand ¢(E x -) =v. We
denote by Hg (1, v) the set of optimal transport plans i.e., the set of measures ¢ € II(u, v) achieving
the infemum in Eq. ). The set P,(E) is endowed with the distance W),. Define:

PoC) = (e PE) : YT >0, [ sup [l dpla) < o).
te[0,T)

For every p, p' € Pp(C), we define:

Wp(pv p/) = Z 27"(1 A WP((ﬂ-[O,n])#pv (W[O,n])#p/)) .
n=1

We equip P,(C) with the distance W,,. We say that a subset A C P,(C) has uniformly integrable
p-moments if the following condition holds:

VT >0, lim sup/ll sup_[lz¢]>a < sup IIztII”> dp(z) =0. (p-UI)
] te(0,T

=30 he A te[o, T

)

In the same way, a sequence (p,,) has uniformly integrable p-moments if the condition (p-UI) holds
for the sequence (p,) in place of A. Following the same lines as [Vil09, Th. 6.18] and [AGS08|
Prop. 7.1.5], we obtain the following lemma. The proof is provided in Appendix [A1]

Proposition 1. i) The space Py(C) is Polish.

ii) A subset A C P,(C) is relatively compact if and only if, it is weakx-relatively compact in P(C),
and if A has uniformly integrable p-moments.

Finally, we will also consider P,(C)-valued sequences of random variables. Therefore, the
following extension of Lemma [I will be useful. It is established in Appendix

Lemma 2. Let (p,) be a sequence of random variables valued in P,(C). Assume that (I(p,)) is

relatively compact in Pp(C). Then, (pn) is tight in Ppy(C).

2.3 Spaces of McKean-Vlasov measures

Consider a non-negative number o2 and a vector field b : R x RY — R? satisfying the following
assumption:



Assumption 1. The vector field b : R x R? — R? is continuous. Moreover, there exists C > 0
such that for all x,y € RY,
[b(z, )l < CA+ ] + llyl) -
For every u € P1(R?), we define b(x, ) := [ b(x,y)du(y), with a slight abuse of notations. We
define L(p) which, to every test function qb € O2(R% R), associates the function L(u)(¢) given by

L(p)(¢)(x) = (b(x, ), V(2)) + 0* Ad(z). 9)

Let (X; : t € [0,00)) be the canonical process on C. Denote by (F;* );>0 the natural filtration (i.e.,
the filtration generated by {Xs:0 < s <t}).

Definition 1. Let p > 1. We say that a measure p € P,(C) belongs to the class V,, if, for every
¢ € CZR%,R),

6(X,) — / L(p2)(6)(X.)ds

is a (F7*)i>0-martingale on the probability space (C,B(C),p). We denote by V, the set of such
measures.

In the sequel, it will be convenient to work with the following equivalent characterization. The
martingale property implies that every measure p € V, satisfies G(p) = 0, for every function
G : Pp(C) — R of the form:

t T
G(p) := / <¢(~"Et) — ¢(xs) */ L(Pu)(fb)(wu)dU) I hizo,)do(x) (10)
S ]:1

where r € N, ¢ € C2(R4R), hy,...,h, € C.(RLR)", 0 < vy < --- <9, < s < t, are arbitrary.
We denote by G, the set of such mappings G. Assumption [I] ensures that these mappings are well
defined. By Def.[I] every p € V,, is a root of all G € G,. As a matter of fact, a measure p € P,(C)
belongs to the set Vp, if and only if G(p) = 0 for every G of the form (I0). In other words, Def. [T
is equivalent to the following identity:

= ) ¢ '({oh). (11)

Geg,
The following lemma is proved in Appendix [A3l
Lemma 3. Let Assumption[d hold true. Every G € G, is a continuous function on P,(C) — R.
The following result is a consequence of Lemma [3 and Prop. [l

Proposition 2. Under Assumption[d, V,, is a closed subset of Pp(C). Moreover, equipped with the
trace topology of Pp(C), V, is a Polish space.

Proof. For all p,, € V, = pso in Pp(C), it holds by Lemma[Bl that G(ps) = 0 for all G € G,,, which
shows that po, € V), by (). Hence, V,, is closed. A closed subset of a Polish space is also Polish.
By Prop.[ V, is Polish. O

2.4 Dynamical systems

Recall the definition of the shift ©;(x) = x4. defined on C. Let us equip the space V,, assumed
nonempty with the trace topology of P,(C), making it a Polish space (see Prop. 2)). With this at
hand, one can readily check that the function ® : [0,00) x V,, — V,, defined as (¢, p) — P:(p) =
(O4)#p is a semi-flow on the space (V,, W,), in the sense that ® is continuous, @ (-) coincides with
the identity, and ®;ys = ;o @, for all ¢, s > 0, see [Ben99] for a nice exposition of the concepts
related to semi-flows. The omega limit set of p € V,, for this semi-flow is the set w(p) defined by:

= {®:(p) : s> 1}
t>0

Equivalently, w(p) is the set of W,,-limits of sequences of the form (®, (p)) where ¢,, — co. A point
p €V, is called recurrent if p € w(p). The Birkhoff center BC, is defined as the closure of the set
of recurrent points:

BC,:={peV,:pecwlp}.
Consider a non-empty set A C V,,.



Definition 2. Consider the semi-flow ®. A lower semi-continuous function F :V, — R is called
a Lyapunov function for the set A if, for every p € V,, and every t > 0, F(®:(p)) < F(p), and
F(®¢(p)) < F(p) whenever p ¢ A.

The following result is standard.
Proposition 3. Let p > 0. If F' is a Lyapunov function for the set A, then BC, C A.

Proof. The limit ¢ := lim;_,oc F(P¢(p)) is well-defined because F'(P;(p)) is non increasing. Consider
a recurrent point p € Vp, say p = lim,, @, (p). Clearly F(p) > F(®,,(p)) > ¢. Moreover, by lower
semicontinuity of F, £ = lim,, F(®;, (p)) > F(p). Therefore, ¢ is finite, and F(p) = ¢. This implies
that ¢t — F(®.(p)) is constant. By definition, this in turn implies p € A, which concludes the
proof. O

3 Main results

3.1 Interpolated process and weakx limits

Let (£, F,P) be a probability space. Let d > 0 be an integer. For each n € N*, consider the
random sequence (I)) starting with the n—uple (X;™,..., X;"") of random variables X" € R%,

with ((f;’n)ie[n])kel\!* and ((C;i’n)ie[n])kel\!* being R¥*"-valued random noise sequences. For each
of integer n > 0, define the filtration (F}*)ken as in Eq. @) or, more generally, as any filtration
such that the following random variables

(Xo™)icm)s (€™ Viem)esks (G iem))e<k)

belong to F;'. Consider the following assumptions:

Assumption 2. The sequence (k) is a non-negative deterministic sequence satisfying

I — 0, and — foo.
Jim =0, an zk:% +00

Assumption 3. The following hold true.

i) For each mn, the n triplets ((Xé’n,(C;i’n)keN,(f;i’n)keN))ie[n] is exchangeable as a n-uple of
R x (ROHN x (RN ~valued random variables.

it) It holds that sup EH{;”H4 < 00. Furthermore, for each n >0, and each i,j,
k,n

E|&T)

. \T
]'—1?} and E {51?-7:1 (&11) |]:1?} = UQ]li:dea
for some number o2 > 0.

iti) For each k, and each n, it holds that E||¢,™| < oo, and

. 1,n n
(k,n)l—lg?oo,oo) E HE |:<k+1 | fk:|

‘:0

Remark 1. Assumption [3-[) holds under the stronger assumption that the n-uple (Xé’")ie[n] 18

exchangeable, (f;’n)z‘e[n],keN is an 4.4.d. sequence independent of (Xé’")ie[n], and Q;’" = 0 for every
k.

Assumption 4. We assume either:
, 1, 1,
i) supy, B[ X" 2 + 116" 7] < oo,
or the stronger condition:

it) The collections of r.v. (|Xp™|? : k € Nyn € N*), and (||G."]? : k € N,n € N*) are
uniformly integrable.



Recalling the definitions of the interpolated processes X" in (B)), and the definition of the
occupation measure m™ in (@), we shall consider the shifted occupation measure

n 1 -
(I)t(m ) = E Z (S@t()’(i,n) 5
i=1

for each n € N* and each t € (0, +00). Note that ®;(m") is a r.v. on P,(C). We refer to the set

M= ace  ({(®(m"))4P}) (12)

(t,n)—(00,00)

as the set of accumulation points of the probability distributions of ®,(m'™) as (t,n) — (o0, 00).
In other words, M is the set of measures M € P(P,(C)) for which there is a sequence (¢, ¢ )n on
(0,00) x N*, such that t,, =, 00, @, —n 00, and (P;, (m¥)) converges in distribution to M.

The following two results show that the collection (®;(m™)) of random variables is tight (proven
in Section ), and that their limits in distribution are supported by the set of McKean-Vlasov
distributions (proven in Section ):

Proposition 4. Let 1 < p < 2, and let Assumptions[D,[2 [3, and[f}-[@) hold true. Then, the collec-
tion of shifted occupation measures {®.(m™) : t > 0,n € N*} is tight in P,(C). If Assumption[f]-(i)
additionally holds, the result remains valid when p = 2.

Proposition 5. Let 1 < p < 2, and let Assumptions [, 3, [3, and [{I-Q) hold true. Then, V, is
a nonempty closed set, and for every M € M, it holds that M(V,) = 1. If Assumption [J-{)
additionally holds, the result remains valid when p = 2.

3.2 Ergodic convergence

We provide the proof of the following theorem in Section 5.3l
Theorem 1. Let 1 <p < 2, and let Assumptions[d, [2, [3, and[J-@) hold true. Then,

1 t
—/ W, (®,(m™),BC,) ds ——— 0.
tJ (t,m)— (00,00)

If Assumption[J-@) additionally holds, the result remains valid when p = 2.

Recall the definition uj := %Z?:l 1) xim The proof of the following corollary is provided in
Section .41

Corollary 1. Let 1 < p < 2, and let Assumptions([D, [2, [3, and[J-@) hold true. Assumptions[I, [3,
and[-@) hold true. Then,

k n
>y MWW (pf (m0) 4 (BCyp)) v
Zf:l 8 (k,n)—(00,00)

If Assumption[§-{) additionally holds, the statements remains valid also when p = 2.

3.3 Pointwise convergence to a global attractor

Depending on the vector field b, it is often the case that each measure p € V), is uniquely determined
by its value pg = (o) 4p € Pp(R?) in the sense that there exists a semi-flow ¥ : [0, 00) x P,(R?) —
Pp(RY), (t,v) — ¥4 (v), defined on [0,00) x Pp(R?), and such that

p < Vp SVt > 0, pt = ‘I’t(p()) (13)

We shall say that in this situation, the class V,, has a semi-flow structure on P,(R%).
The granular media model detailed in Section E.I] below is a typical example where such a
situation occurs. This will also be the case of the random features model detailed in Section
In this section, we are interested in the behavior of the measures p} as (k,n) — (00, 00), termed
the “pointwise” convergence of these measures, when the semi-flow ¥ has a global attractor. We
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recall here that a set A, C P,(R?) is said invariant for the semi-flow ¥ if ¥;(A,) = A, for all
t > 0; A nonempty compact invariant set 4, C P,(R%) is a global attractor for the semi-flow ¥ if

Vv € Py(RY), Jim W, (0y(v), Ap) =0,

and furthermore, if there exists a neighborhood A of A, in P,(RY) such that this convergence is
uniform on N. Such a neighborhood is called a fundamental neighborhood of A,
The following result is proven in Section

Theorem 2. Let p € [1,2], and let Assumptions[D, [3, and [3 hold true. Let Assumption [J-@) or
the stronger Assumption[J-{) hold true according to whether p < 2 or p = 2 respectively. Assume
in addition that the V), has a semi-flow structure on P,(R?) as specified in [A3), and that this
semi-flow ¥ admits a global attractor A,. Then,

n P
W, (pg, Ay) ——— 0.

(k,n)—(c0,00)

4 Examples

4.1 Granular media

The proofs of the results relative to this section are provided in Section [6
In this paragraph, we review some properties of the set Vo of McKean-Vlasov processes, in the
case where
b(x,y) = —-VV(x) = VU(xz —vy), (14)

where V,U : R? — R are two functions satisfying the following assumption.

Assumption 5 (Granular media). The functions V,U belong to C*(R%,R). Moreover, there exists
M\, C, B >0, such that for every x,y € R?, the following hold:

i) (2, VV(2)) > Xz|* - C,
i) Uz) = U(—z), and (x, VU (z)) > —C,
ii) |VV ()|l + VU ()] < C(1+ [z]),
iv) [IVV(2) = VV ()| + VU (z) = VU )|l < C(lle = y|” V ||z = yl))-

Under Assumptions[Bl the vector field b satisfies Assumption[Il We will see later, as a byproduct
of Th. Bl that the set Vo of McKean-Vlasov distributions associated to the field b in Eq. (I4), is
non empty. We say p < Z% if u € P2(RY) admits continuously differentiable density w.r.t.
the Lebesgue measure .#¢, which we denote by du/d#?. Define the functional 7 : Py(RY) —
(—o0,00] as A (n) = F(u) + ¥ () + % (p) with

F(u) = /02 log (di’lfd (:z:)) du(z) if p < 24

00 otherwise,

1
V(p) = /V(:E) du(z), and % (p) =3 // Uz —y) du(z)dp(y)-
The following central result provides a central properties of the elements of Vs.

Proposition 6. Let Assumption[d hold true, and let b be defined by (Ij)). Assume o > 0. Consider
p € Va. Then, for every t > 0, p; admits a density © +— o(t,z) in C*(R% R) w.r.t. the Lebesgque
measure. For every t > 0, the functional t — 5 (pt) is finite, and satisfies for every ta > t1 > 0,

ta
Hlpu) = o)== [ [ lua)Pott,z)dade, (15)
t1
where v; is the vector field defined for every x € R by:

ve(x) == =VV(z) — /VU(:E —y)dpi(y) — 0*Vlog o(t, z) . (16)

11



Define P35 (R?) as the set of measures p € P2(R%) such that u < £?. Define:

d
S:={peP;RY : VV + /VU(- —y)du(y) + 0®Vlog d,,;d =0p-a.e.}. (17)
Finally, for every € > 0, define:
Ac:={peVe : eSS Vt>e¢ pr=p}. (18)

Proposition 7. We posit the assumptions of Prop.[0 For every e > 0, the function p — € (pe)
1s real valued on Vo, lower semicontinuous, and is a Lyapunov function for the set A.. Moreover,

BC, CA_().

We also need to consider a setting where Vy has a semi-flow structure on P2 (R?) as in (3] in
order to set the stage for the pointwise convergence of the measures p} issued from our discrete
algorithm. To that end, we shall appeal to the theory of the gradient flows in the space of
probability measures as detailed in the treatise [AGS08| of Ambrosio, Gigli and Savaré. The
following additional assumption will be needed:

Assumption 6. The functions U and V satisfy the doubling condition. Namely, there exists
constants Cy,Cy > 0 such that

Ul+y) <Cu(1+U@)+U(y) and V(z+y)<Cy(1+V(e)+V(y)).

Proposition 8. Let Assumption[d hold true with 8 = 1, and let Assumptionld hold true. Then, for
each p € Vo, the curvet — p; belongs to the set of absolutely continuous functions AC3,,.((0, 00), Po(R%))
as defined in [AGS08, Sec. 8.3], and is completely determined by po € P2(R?) as being the gradient
flow of the functional H in Po(R?). Thus, Vo has a semi-flow structure, and we write p; = V(o).

For completeness, we recall along [AGS08| Chap. 8 and 11] that ¢ — p; being the solution of the
gradient flow of 7 in Py(R?) stands to the existence of a Borel vector field w; : R — R such that
w; belongs to the tangent bundle Tan,, P2(RY) for £ ~almost all ¢ > 0, ||w¢| 12(,,) € L} (0, 00),

loc
the continuity equation 9;p; + V - (prw:) = 0 holds in general in the sense of distributions, and

finally, w; € —05(p;) for £1-almost each t > 0, where 9. is the Fréchet sub-differential as
defined in [AGS08, Chap. 10], which always exists under our assumptions. Actually, w; = v; as
given by Equation (I6]) for almost all ¢.

We now turn to our discrete algorithm. Consider the iterations:

i,n in Vk+1 in i, in i,n
Xl = X" === VU™ = XP™) = e VVX™) + V2% 16" (19)
J€[n]

for each ¢ € [n]. This is a special case of Eq. ([Il) with b(x,y) given by Eq. (I4) and C,i’” =0 for all
k. For simplicity, Assumption Bl will be replaced by the following stronger assumption:

Assumption 7. The n-tuple (X,™, ..., Xg™) is exchangeable and sup,, E(||Xy"||*) < oo. More-
over, (§")ien) ken are i.i.d. centered random variables, with variance 014, and such that E(||€74) <
0.

The next proposition implies that the condition ii) in Assumption [ holds.

Proposition 9. Let Assumptions[2, [4 and[7 be satisfied. Then,

sup E [||X;"||4} < 0.
neN+,keN

Putting Assumptions 2 Bl and [7 together, the hypotheses of Th. [l are satisfied for p = 2.

Theorem 3. Let Assumptions[2, [A and[7 be satisfied. Assume o > 0. Then, the set S given by
Eq. (I7) is non empty, and furthermore,

k n
Doy W, S) P
Zle M (k,n)—(00,00)
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Proof. Use Cor. [l with p = 2, together with Prop. [7 O
We now turn to the pointwise convergence of the measures p}.

Theorem 4. Let Assumption [d hold true with 8 = 1, and let Assumption[@ hold true. Assume
that the semi-flow W which existence is stated by Proposition [§ has a global attractor As. In the
case where Ag is a singleton, it holds that S = As. In any case,

Wo (g, A2)

(k,n)—(c0,00)

The classical case when As is reduced to a singleton is the case where the functions U and V are
both strongly convex; indeed, there exists here A > 0 such that Wa (W, (), ¥, (v)) < e MWa(v, V')
[AGS08, Th. 11.2.1]. A rich literature is devoted to relaxing this strong convexity assumption, see
[CMV03], [CMV06, [CGM08, BGG13|, IGLWZ22] as a non exhaustive list.

4.2 Random features

Consider two integers ¢ > 1, d > 2. For any fixed n-uple w = (w'!,--- ,w") of R4~ 1-valued vectors,
we consider the following regularized risk minimization problem:

1 A
win Raw) =5 [(aa,w) —yPdviey) + o al?, (20)
where v € Po(R? x R), A > 0 is a regularization parameter, and where for every z € RY, every
a=(al,...,a") in R,

N ,
h(z;a,w) = E Zach(:c,wz),
=1

where ¢ : RIxR4"! — R is a function, refered to as the feature map. In the sequel, we consider the
process of searching for a minimizer of (20]), when the coefficients w are set to an iid sample w§ :=
(wy™, ..., wy™) of n random variables on R*~!, following a prescribed distribution. We consider
the stochastic gradient descent (SGD) on the a-parameter, obtained by randomly selecting, at
n,n

time k, a sample (z,,y),,) according to the distribution v. Denoting by aj = (a,lv’", ceap”)
the updated parameters, we consider the iterations:

1 Aa?|]? ~n
ap,1 = ap —Y%+1nVa §(h(z}§+1;a2,w8) —yp)? + Tl; +v2Vr1€501 (21)

=n ~1 g . . . .
where &, = (§),..., &) are centered iid random variables with variance o > 0, where

Y417 is the learning rate, and V, stands for the gradient w.r.t. variable a. In the algorithm given
by Eq. 1), only the parameter a is updated, while the parameter w is set once for all, at the
initialization step. In this setting, the values (p(z,wy"));c|n) are refered to as the random features
associated with an input z. Note that the learning rate ;417 is chosen in order to vanish with k,
but also to scale with parameter n. Due to the presence of the term MEZ 41, the iterations (1))
should be considered as a noisy version of the classical SGD, in the flavor of a Langevin algorithm.
The standard SGD case is obtained by setting o = 0. The following assumption summarizes the
stated conditions on the above random variables.

Assumption 8. The following holds.

i) The rv. (§™ :k € N*i € [n],n € N*) are real iid, centered, random variables with variance
02 >0, and satisfy E((£]"")*) < co.

i) The rov. ((zp™,yi™) : k € N*,i € [n],n € N*) are iid, with distribution v € P(R? x R).
iii) The r.v. (a§™ :i € [n],n € N*) are iid real r.v., and satisfy E((ay")*) < oo.
w) The rv. (wy™ :i € [n],n € N*) are iid, and satisfy E((wy")?) < 0.

v) The families of r.v. respectively mentioned in the four above pointsHid are independent.
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Eq. ZI) can be expanded, for every i € [n], as:

n

' Nt in s » » - .
az:l =(1- T+)a;c’n + 7:_ Z(QZJA —ap"p(xpy, wy™))e(r,, wg™ )+ v 27k+1§;£1 .
j=1

We introduce the following vector field for every (a,w), (a’,w’) € R x R4~1:

b((asw), (a/,w')) == / (v — ool w')) ol w)dv(z, y) — Ma
=Q(w) —d K(w,w') — \a,

where we set:
K(w,w') = / o, w)p(e, 0! Ydv(z, y)
Q(w) == / vl w)dv(z, ).

Then, the SGD iterations can be written as:
G = a4 SO B0 "), (0 ™) 4 el + TG
j=1

where 511:1 is the random perturbation given by:

n

- 1 ) ) .
Gty = = [ — ol el wh ™)t wi™)]
j=1

L Z [ / (v — (e, w™) ol wy™ ()

The above iterations can be casted into the general form (), by setting X,i’n = (a;’",wé’”),
along with the vectors in R%: b((a,w), (a’,w’')) = (b((a,w), (a’,w")),0), C,i’}:l = (5,111,0) and
511’21 = (57611, 0). Consequently, Th.[Ilcan be used in order to characterize the long run convergence
of the occupation measure of the updated parameters. We define F}' as the o-field generated by the

rv. af”, wy™ and (a},yl &, ..., &™) for | € [K]. Note that (¢, ..., (™) is Fj-measurable.
Remark 2. Although the particles X,i’" = (agn,wé’n) satisfy Eq. (Izll), the notable difference with
the model considered in Section[3 lies in the fact that the variables «Ekfl here satisfy:

E(& T (60T |FR) = o’diag(1,0,...,0),

whereas our results have been proven under the assumption that E(f;fl (f;fl)ﬂf,?) = 021,. This
difference is minor, and our results can be extended without any difficulty to the former case. The
most important modification lies in the definition of the McKean-Viasov distribution V), in Def. (),
where one should replace the Laplacian term Ad(x) in the definition () of L by the second order
partial derivative w.r.t. the first component. This gives rise to the definition:

L0 (1)(6)(a,w) = (b(a, w), ), V(x)) + 0202 p(a, w) . (22)

To avoid any confusion, we now denote by VZ(,UZ’O) the set of McKean-Viasov distributions defined
as in Def. {dl), replacing L by L("Z’O), and we denote by BCI()GQ’O) the corresponding Birkhoff center.

Assumption 9. The following holds.
i) The function ¢ is bounded and continuous.
i) [yldv(z,y) < co.

Proposition 10. Let Assumptions[2, [§ and[d hold true. Then, sup,, E((ay™)* 4+ (™4 < oo
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Proof. The proof is provided in Section [Z.T} O

We denote by 7 : (a,w) — w the projection R x R4~1 — R9~1 on the last d — 1 components.
Due to Prop. [I0, the conditions of application of Th. [I] are satisfied. As a consequence of Th. [I],

2
the set BCég %) is non empty. Moreover, as the marginal distribution of the particles w.r.t. the
w-variable is a constant, fixed once for all to the distribution of wé’l, we obtain the following result.

2
As long as Assumptions @l and [0 hold true, for every w € Pa(R9™1); there exists p € Bng %) such
that Tup; = w for all t > 0.
For every p € Pa(R x R471), define:

1

Ro(p) = 5/ (/w(w,w)du(a,w) —y)2dV(:v,y) + %/anu(a,w)-

The functional Ry is related to the initial minimization problem through the identity:

1 n
= — O(ai wi
R(a,w) =Ry (n;_l (a ,w)) )
1

for every @ = (a',---,a") and w = (w',--- ,w"). For any u € P(R x R471), we write the
disintegration of the measure p as:

p(da, dw) = p(da|w)spp(dw) .
For every o > 0, we define the functional R, as follows, for every u € Pa(R x R471):

Rolp)i= R + 7 [ tog (L1 @) ) dute). 2

whenever yu(-|w) is absolutely continuous w.r.t. the Lebesgue measure .#1, and R, (u) = +oo
otherwise. For every u € P2(R?), we define:

B, (a, w) = b((a,w), 1) + 028, log (%(a)) )

whenever p(-|w) < £, or 0 = 0.

If g, u* € P2(RY), by [AGS08, Lem. 12.4.7], there exists a Borel map on R4™1 — Py(R x R)
which, to every w € R?~!, associated a probability measure ~(:|w) € I3 (. (-|w), p(-|w)), where we
recall that TI9(u* (-|w), u(-|w)) is the set of 2-Wasserstein optimal transport plans between p*(-|w)
and p(-|w), as introduced after Eq. (8)).

Lemma 4. Let Assumptions[2 and[@ hold true. Consider w € P2(R¥™1) and u, u* € Po(R?) such
that Tup = Tpp* = w. Assume that either o = 0, or that the following holds for w-almost all w:
pr(lw) < £ and

/ O 1ogM(a) 2du(a|w) < 00.
a1
Let w— ~y(-|w) be a measurable selection of the correspondence w — T3 (s (-|w), pu(-|w)). Then,

Ro() = Ro() = = [ [0 (a0sw)(a - a.)dy (o, alw)deo(o)

A .
4 [ WEG( ), )z
Proof. The proof is provided in Section O

Lemma 5. Let Assumptions[d and [ hold true. Consider w € P2(R?), and p € Vg’z’o) such that

Tupo = w. In that case, Typ = @ for all t. If o > 0, then, for every t > 0, pi(-|w) < L for
w-almost every w. Morever, for every t > 0 and w-almost every w,

/ (aa log %}w)u) dpi(alw) < . (24)

Finally, R,(p:) is finite for all t > 0, and for all t3 > t1 > 0,

Relpr) = Rolp) < = [ [P dn(awjar (25)
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Proof. The proof is provided in Section O

For every w € Po(R?71), define the set
S(w) == {p € Po(RY) : #yp = w and 9, = 0, p-a.e.} .

Corollary 2. Let Assumptions[2 and[Q hold true. For every e > 0, the map p — Ry (pe) is well

defined on Véaz’o) — R, lower semicontinuous, and is a Lyapunov function for the set:
(¢°,0) d—1
Ac:={p eV, : Jw € Po(RY7),3n € S(w), Vt > €, pr = p}.

2 _
Moreover, Bng 0 K.
Proof. Tt is an immediate consequence of Lem. O

Proposition 11. Let Assumption [d hold true. Then, for every w € Po(RI~1Y), there emists a
unique minimizer, denoted by p*(w), of Ry among all i € P2(R?) such that 7yu = w. Moreover,
w(w) is the unique measure p satisfying v, =0 p-a.e., and Tpp = w.

Proof. As discussed after the statement of Prop. [0, there exists a recurrent point p such that
wupo = w. By Cor. [ p € Ao, which implies that py € S(w). This shows that, for every
w € Po(RI71), S(w) is non empty.

Consider an arbitrary p* € S(w). By Lem. [ p* is a minimizer of R,, among the set of
measures with marginal . This shows existence. Let p be another such minimizer. By Lem. Ml
Wa(p*(-|w), u(-|w)) = 0 for w-almost every w. Thus, p = p*. O

We are now able to state the main result of this paragraph. Define:

/’[’k‘ = g Zl (az’nqwé’n) .
i=

Theorem 5. Let Assumptions[d, [ and[D hold true. Assume that wé’l has the distribution w €
Po(RI1). Then,

k n *
Yo Wa (uft () P
Zle M (k,n)—(00,00)

Proof. Put together Prop.[I0, Cor[l, Cor.[2 and Prop. I} O

Remark 3. Let w € Po(R471Y). As in the proof of Lemmald, one is able to apply [AGS0S, Th.

2
11.2.1] and obtain the contraction Wo(ps, u*(w)) < e Wa(po, p*(w)) for every p € Véa ) such
that Ty po = w. With this in hand, in the same spirit as Theorem[2, one can establish the pointwise

convergence

n oo P
Wa(pi, p* (@) ———— 0,

(k,n)—(00,00)

under the assumptions of Theorem [3.

5 Proofs of Section

5.1 Proof of Proposition (4]

In this paragraph, consider 1 < p < 2. Note that (®;(m™)) belongs to P,(C). In the light of
Lemma 2] and Prop [Il we should establish two points: first, the weakx-relatively compactness of
the family of intensities {I(®;(m™))}+.n; second, a uniform integrability condition of the pth order
moments of the measures I(®;(m™)(z)). These results are respectively stated in Lemmas [6] and [
below.

Lemma 6. We posit the assumptions of Prop. [{} The family of intensities {I(®¢(m™))}sn s
weakx-relatively compact in P(C).
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Proof. Let us establish the first point. For every bounded continuous function ¢ : C — R, we have

1@ ))(@) = E | [ o) (@) =+ 3 ok =B [orxi]

lE [n]

where we used the exchangeability stated in Assumption BHf). Let us define the measure ]T? €
P(RY) as
I(9) == [w(X,™)]

for each measurable function ¢ : R — R,. According to Theorem 7.3 in [Bil99], the weakx-
relative compactness of the sequence (I}');,, in P(C) is guaranteed if and only if the weakx-relative
compactness of (I?);,, in P(R?) is ensured, and if the following equicontinuity condition

lim hmsupP( W10 () > E) =0 (26)

§—0 t,n t+
is met for every e, T > 0, where wX (§) is the modulus of continuity of a function x on the interval
[0,T]. The weakx-relative compactness of (I1');, in P(R?), follows directly from Assumption Hl
Using the notation k; := inf{k : Zi-c:l vi > t}, and using the definition in Eq. (), we obtain the

decomposition:

th’n_)_(sl’n P+ NS+ Uy, (27)

1 n ke—2 ]
7=1 \k=ks

+ (T, — 8) DX XTI ) + (7, — £ (X" 1,X,gt”1))

ki—2
N:t = Z \/7k+1§k+1 + \/ Vks in \/ ’yktglitn
k=ks
n ke—2 . )
Use =~ Z (Z Vo1 G+ (e, = 8) G+ (7, — 1) Cg) '
i=1 \k=k

Let the sequence (7x) be defined by: g, := 7k, — 8, Y&, := Tk, — t and g := i for all k # k;_, ke, .

Note that:
ke—1

> Akpr=t—s. (28)

k=ks—1

Moreover, we have:

Vks =

— Tk, — ¢ —
vk, » and kfy V% < A Tk, - (29)

ki

The term N, is expressed as a sum of martingale increments, with respect to the filtration 7.
Let | - ||o denote the a-norm in R?. We apply Burkholder’s inequality stated in [BDG72, Th. 1.1]
to the components of the vector N7, in R%. As Eq. 28) and 29) hold:

ke—1 4
~ 1,n
E Ve+1 §k+1 4l

=ks—

B (N2 3) < - s)E

where C' is a constant independent s,¢ and n. As Assumption B}{) holds, there exists a constant
C > 0 independent of s, t, and n, such that

supE(H mlt) <o -2 (30)

Furthermore, using Jensen’s inequality along with Eq. ([28]), we obtain

ke—1
2
n
122" <

7k+1Hb Xl ,n Xj n

n] k=ks—1
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Using Assumptions [Tl and Bl there exists a constant C', independent of s, ¢, n, such that
supE(H il ) < C(t—s)2. (31)

Also, by Jensen’s inequality, we have

ke—1

oz <

Vk+1 HCkHH
7] k=ha 1

Since, by Assumption 3, we have sup,, ,, IE[||C,1"||2] < 00, there exists a constant C' independent of
n, s, and t, such that:

supE ([[2]*) < €t = )2 (32)
neN
Combining Equations (31I), 80) and (B2), we have shown:

sup e ||| P2y + N2 + Uzl ] < € - s, (33)

where 0 < s < t < 0o, and C is a positive constant, independent of s, ¢, n. Using [Leo23, Th. 2.8]
and Markov’s inequality, Eq. (26]) hold. O

Lemma 7. We posit the assumptions of Prop.[{} For every T > 0,

lim sup E
a— 00 teR}, neN*

/ sup ||.T5||p ]lSUpsg[o,T]llrsl>ad¢t(mn)($)1 = 0.

s€[0,7)

Proof. By the exchangeability stated in Assumption [BH(l), we obtain:

E 1

sup HXt+u

u€[0,T] u€[0,T]

/ sup ||z[|” 1 Lo lzu | >adPe(m )(I)] =E

Lo ||Xt+u|>a‘| ’

for every k,t,n. Recalling the decomposition introduced in Eq. (27), for every w € [0,T:

[k < ot (2 + Nl + Pl + 10
Hence,
S1m [P
[ et se <4 (HX [t g IV g,

p
+HPtT}t+uH 1 Es1[Jp ||Ptt+u||>a +HUtt+uH ]luGS][—IOP,’T]||U;t+u||>%> :

Therefore, for each T' > 0, it suffices to obtain the uniform integrability of the four collections
of random variables: (| X;"||? : ¢t € Ry,n € N*), (Supyepo, ) IV gull? = t € Ry,n € NY),
(suPuepo,r) 1P i4ull? = t € Ryyn € N¥), and (supyepo ) Ul 4ull? : t € Ry,n € N¥).

(IX} "™ : t € Ry,n € N*) is uniformly integrable by Assumption B-(@) when p < 2, and by
Assumption () when p = 2. As obtained in Eq. ([B0]), Burkholder inequality stated in [BDG72,
Th 1.1] yields:

E| sup H]\f,;’,eruH4 <CT1?,

we[0,T]

where C is a constant independent of t,n, and T'. Hence, since p < 4, we obtain the uniform
integrability of {sup,cjo,7) [[N{'14.ll” : t € Ry,n € N*}. As obtained in Eq. (1) and Eq. (32), we
derive:

e (1+ | X727

+HX1n

sup ||Ptrft+u||p
w€e[0,T] ] k=k¢—1
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and

kt+T 1
sup HUtntJruH < - Z Z Y ||CI ’ ;
uel0.T] ] k=ki—1

where C remains a constant independent of n and ¢t. Using Assumption @l-{l) when p < 2, and
Assumption @) when p = 2, by de la Vallée Poussin theorem, there exists a non-decreasing,
convex, and non-negative function /' : R} — R such that
P
)] < Q.

Hence, by Jensen’s inequality, and the exchangeability stated in Assumption [3]

F(h
lim F(h) =o0,and sup E {F (HX;"
h—oc0 keN,neN*

kt+T 1

P
|7 (o I7l)] <3 3 seam[r (em (1 fxie]))]
w€e[0,T] —ki—1
Consequently,
P
sup  E F( sup HPZ,’HUHPN < sw E[F (o1 (14| x0"))")] < 0.
teRy ,neN* u€[0,T] keN,neN*

Therefore, de la Vallée Poussin theorem yields the uniform integrability of the collection

(sup [IPlpnll” : ¢ €Ryn e NY).
uel0,T] ’

The uniform integrability of the collection (sup,epo 77 U440l @ t € Ry, n € N¥) is obtained, by
the same arguments. This completes the proof. O

To conclude the proof of Prop.[] it is sufficient to remark that the tightness conditions provided
in Lemma [] are satisfied, thanks to Lemmas [0 and [7l with Prop. Il

5.2 Proof of Proposition
The core of the proof is provided by the following proposition.

Proposition 12. Let Assumptions [, [2, [3 and [-{) hold,

lim E|G(®:(m"))| =0,

(t,n)—(o0,00)
for each function G € Gp,.

Proof. We need to show that for each R x N—valued sequence (t,, ¢,) — (00,00) as n — oo, the
convergence E|G(®;, (m¥"))| — 0 holds true, where G = Gy ¢ hy.....hyt,5,01,...,0. has the form of
Eq. @), with 0 < v; < -+ <w, < s <t We take ¢,, = n for notational simplicity, and we write
my, = @, (m") € P,(C). We have

1 tn-‘rt
Glma) = 3 (o0 —oXiz) - [ L ki Kt | @ (s

i€[n) J€[n]

where se set ¥(z,y) := (Vé(z),b(x,y)) + 02A¢(z), and

H h tn +UJ

We note right away that |Q""| < C where C depends on the functions h; only, and furthermore,
the random variables {Q“”}ie[n] are JFp' +Sflrneausurauble, where we recall that the integer k; is

defined by k; := inf{k : S5 v >t}.
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In the remainder, we suppress the superscript (™ from most of our notations for clarity. To
deal with the right hand side of (34)), we begin by expressing ¢(X{ ,,) —#(X{ ) as a telescoping
sum in the discrete random variables X :

Kty +t—2

dX] ) —o(X] )= > (6(Xi) — e(Xh))

k=kt, +s
+o(X],40) — ¢(Xlitn+t—1) + ¢(Xlitn+s) — (X}, 1)

The summands at the right hand side of this expression can be decomposed as follows. Remember
the form (I)) of our algorithm. Denoting as Hy(x) the Hessian matrix of ¢ at =, we know by the
Taylor-Lagrange formula that there exists 011 € [, Tk+1] such that

. _ _ . . 1 . . . _ .
B(Xh1) — 0(XE) = (VO(XD), Xiy — XD+ 5 (i — X0 Ha(K,,.,) (Xis — X0)

1 i,n % j i
=Tt D AVO(XL™),b(X G, XQ)) + a0 A(X)
J€n]

+ V271 (VS(XL), Ehr) + et 1 (VO(XL), Gy
1. . . _ . _ _
+ 5 (X = X0 Hol(X,..,) (Xir = X[) = yer10? A6 (X)
1 o o o
= E Z 7/)(X137X;i) + 27k+1<v¢(X13)7§12+1> + 7k+1<v¢(XIZc)’<IZc+1>

J€[n]

1 i i\ T i i i i
+ B (Xis1 — Xi) Hy(X5,,,) (Xjgr — X}) — yre10° Ap(X})
1 i v i\ i i
= Z V(XL X7) + Yes1 (VO(XL), Gyr) — 102 Ad(X5)+
J€[n]

i iy i i i i iy i
(Xk+1 - Xk) ch(XeHl) (Xk+1 - Xk) - ’Yk+1(§k+1)TH¢(Xk)§k+1

+ V2741 (VO(XL), Ehir) + i1 (Gr) T Ho(Xi)Ehyr-

N~

In this last expression, the terms n= " i€ (X ,i, X fc) will be played against the integral term at
the right hand side of B4), and the other terms will be proven to have negligible effects. Notice
that since tr(Hy(X:)) = Ap(X]), the term

nlichl =V 2’yk+1<V¢)(X,i),§};+1> +7k+1(§lic+1)TH¢(Xli)§lic+1 - 7k+102A¢(Xli)

in the expression above is a martingale increment term with respect to the filtration (F}'), thanks

to Assumption B}-(d]).
To proceed, considering the integral at the right hand side of ([B4]), we can write

tn+t . .
/ WX, X )du =
tn+s

Thip4+t—1 . Thip+s . tntt .
/ B(XE, Xd)du + / B(Xi, X3 du + / B(XE, X1)du,

T tn+s Thiy, +¢—1

Kty +s
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and with these decompositions, we obtain G(m,,) = 218:1 X[, where:

Kpt—2

DN DD SEIC IR / U2 Z Y (XL, Xi)du ) Q'

ze[n] k=k¢, +s ]E[n] Thin+s

X5 = — Z{ in—i-t ¢(X]itn+t_1) + ¢(X7itn+s) - ¢(XZH+S)}Qi’

z€ [n]

x§::*—z /ktw—ZwXZ deu+/t"+t —ZwXZ Xi)du }Q',

Tkip+t=1 " j€[n]

Kty +t—2
n 1 i i i
Xi = Z Q Z Yes1 (Vo (X)), Gy,
i€[n] k=k¢,, +s
Kty +t—2 . . . .
X5 = — Z Z Vk+1 §k+1 (H¢(Xék+1) - H¢(Xlzc>) (lechl) Q"
le[n] k=kt, +s
ktn+t 2
n 3/2
G 2 (VR XD HK, ) ) @
i,j€[n] k=k¢t,, +s
Kty +t—2 . . .
LYY (b (XD b (XD ) @
7p7q€[n]k Kt +s
1 ki, +t—2 CZ T
n 3/2 i j (
X7 = —3 Z Z 'Ykil <\/7k+1 (b(XkaXli) + k2+1> + \/§€k+1>

i,J€[n] k=ki, s

Hy(X5, )G ) Q' and
ki, +t—2

Xg = — Z Z 77k+1Ql

ze[n] k=kt, +s

To prove our proposition, we show that E|x}'| — 0 for all I € [8]. The notation E will be
generically used to refer to error terms.
Let us start with E|x}|. For ¢,j € [n], writing

Kty +t—2

. . Tkt +t—1 .
S (X X]) - / B(XE, X )du

k=ks, +s Thtp+s

and using the boundedness of Q* and the exchangeability as stated by Assumption Bl ({l), we obtain
that

Elx7| < C (E|E?2| =+ E|E?1|/”) .
We begin by providing a bound on the second moments of EY'; and ET,. Recalling the definition
of 1, and using the compactness of the support of ¢ along with Assumption [Il we obtain that

E(E7;)? <2(t-s)*  max  Ellp(X,, X))
UE [tn+8,tn+1]

<C(t—s)? (1 + supE()_(i)Q)
u>0
< C(t—s)?
thanks to Assumption @-({). To obtain that E[x}| — 0, we thus need to show that E|ET 5| — 0.
By Prop. @l above, the sequence (m,,) of P(C)—valued random variables is tight. By Lemma

[ this is equivalent to the weakx-relative compactness of the sequence of intensities (I(m,,)). For
each Borel set A € B(C), we furthermore have that

T(m,)(A) = % Sp [X;’;f;_ € A} =P [Xt{;’; € A]

i€[n]
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Sl

by the exchangeability, thus, the sequence of random variables (thn "\ )n is tight. Let us work
on the random variables Uy := mo—g#X} oy and U2 := m g # X2 oy defined on the set
C([0,t — s]) of continuous functions on the interval [0,¢ — s]. Since ()_(tlﬁr)n is tight, given an
arbitrary € > 0, there is a compact set . C C([0,¢ — s]) such that

VneN*, PUL¢K.]<e.

Writing 4, = supy>; 7k, We now have

ktn+t72
ol 30 e max (R0 K2s) — (X X2
k=Fke, 1 sVe+1
S(t=s) | ma [0 (), U3 () = $(U ), UF )]
u,v€|0,t—s

lu—v|<Fr,, .,
‘We thus can write

E|ELs| = E|ETs| Lws,vz)exz +E | B o] Lws vz)gxe
< (t—s) sup max  [(f(u), g(w)) —(f(v),g(v))]

f,g€K< u,vE[Olt—s]
‘U_U\Sﬁkthrs

+/E(E] )2 V2P U, & K. (35)

By the Arzela-Ascoli theorem, the functions in K. are uniformly equicontinuous and bounded.
Since v is a continuous function, one can easily check that the set of functions S on [0,t — $]
defined as

Si={u=¢(f(u),g(u)) = f,g€Ke}

is a set of uniformly equicontinuous functions. As a consequence, the first term at the right hand
side of the inequality in (B5]) converges to zero as n — oo, since 7, ,, — 0. The second term is
bounded by C4/¢ thanks to the bound we obtained on IE(E{I,Q)Q. Since ¢ is arbitrary, we obtain
that E[ET | — 0, thus, E[x}| — 0.

The terms x2, x>, and x> are dealt with similarly to x.. Considering x2, we have by the
exchangeability that E|x2| < CE|E}|, with

EY = ¢(thn+t) - ¢(Xlitn+t—1) + ¢(Xlitn+s) - Qﬁ(thn-‘rs)
= o(X}, 1) — 0(X7 )+ ¢(X] ) — O(X] 1)

Thip4t—1 Thip+s

Keeping the notations U} := mo ;g #X} | .. and ; introduced above, we have

Bil<2 | max | [0000) ~ UL
lu—v|<Fr,,

Taking ¢ > 0, selecting the compact . C C([0,t — s]) as we did for x7, and recalling that the
function ¢ is bounded, we have

BIEP| < 2w | max (7))~ )] + CF [0} £ K],
: |u;”|§:;ktn+s

and we obtain the E|x2| — 0 by the same argument as for x..
The treatment of x2 is very similar to x2 and is omitted. Let us provide some details for x> .
Here we have by exchangeability that

Kty +t—2

Elxg| < Z Y1 BB,

k:ktn +s

where

By = (k)" (Ho(X,.,) = Ho(XD) (ghi1) Q1
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satisfies

B < Okl | o | [ Ho(Un () — Ho@n ()]
‘u;v‘g’{/ktn +s

Therefore,

E|E"| =

E ‘Ezi"‘ lyiex, +E ‘Ezi"‘ Lysgk.

< CE[|€g4a]® sup  max  [[Hy(f(w) — Hy(f(v))]
fek. u,vE[0t—s]

lu—v|<Ak,
+ /BB )2 BUL €K

Since E||¢).41]|? and E(E,™)? are bounded, we obtain that E|xZ| — 0.
Considering the term X%, we have by exchangeability

Kty +t—2
EX5 < CE| > m41(Vo (X4),Chin)
k:ktn+5
Kty +t—2 Kty +t—2
<CE Z Wr1(Ve (X3)  ElGiyr | FRD)| + CE Z Y1 (Ve (X3) 5 Chrr)
k:ktn+5 k:ktn+s

= IE|XZ,1| + E|XZ,2|a

where (} = ¢} — E[¢} | FP_,] is a martingale increment with respect to the filtration (F7'),. We
have
Bl 69 s B | 77,

>kt +s
which converges to zero by Assumption [B-(I). By the martingale property, we furthermore have

Kipt+t—2

E(XZ,2)2 <C Z 7]34—1 < Cﬁ/kthrs (t - S)’

k:ktn +s

which also converges to zero. Thus, E|x}| — 0.
We now turn to yxg. Here we write

Ky to—2

Z > WAEL

" ie [n] k=ktp, +s

where
Ej =~ > VRb(XG, X)) T He (X, )k @
jE[ ]
Z 5V ’yk+1b Xk’ Xp)TH¢(X9k+1)b(X}C’X;CZ)QI
p,q€[n
satisfies

e e C
Bl < — D U XDkl + —5vArrn Y L+ IXTINA + XD

J€[n] p,q€[n]

We readily obtain from Assumptions B, and @-(@) that E|E}| < C, which leads to E[x%| — 0.
The treatment of the term x7 is similar and is omitted.
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We finally deal with x% that involves the martingale increments n}. We decompose this term
by writing

K t1—2
n 1 iy ¢ i
Xe= >, -~ V2 (VO(X7), 640)Q
k=k¢, 15 lE[’n]
ktn+t72 1
+ > = > et (E) THo(XDEL 4 — 0*Ad(X))) Q'
k=ktn+s  i€[n]

= Xg1 T Xs.2

Since the random vectors ﬂ““, ..., &1 are decorrelated conditionally to Fi by Assumption B} (),
we obtain that

1 ; ) N2
£ (HZMW@b(Xi),&le) Fr| < ot
i€[n]

n

and by the martingale property,

Kty +t—2

t —
E(ng71)2 < Z 07k+1 < C( S)

n n

k=kt,+s

Using the martingale property again along with the inequality (3"} a;)> <n ) | a?, we also have

2
ki, +t—2

B0 < D BB | = 3 (6 THo(XP)8key — *A0(X])) Q'
k=kt, +s i€[n]
ktn+t72
<C Z 713+1
k=Kt, +s
< Yk +SC(t - S)
It results that E(x%)? — 0. The proof of Prop.[[2is completed. O

Proof of Proposition[d. Let (t,,¢n)n be a Ry x N*~valued sequence such that the distribution of
(®y, (m*#)),, converges to a measure M € M, which exists thanks to the tightness of (®;, (m¥")),
as established by Prop. @ Let G € G,. By the continuity of G as established by Lemma [3]
G(®;, (m¥")) converges in distribution to GgM € P(R). On the other hand, we know by the
previous proposition that G(®, (m¥~)) converges in probability to zero. Therefore, GxM = do.
Let supp(M) C Pp(C) be the support of M, and let p € supp(M). By definition of the support,
M(N) > 0 for each neighborhood N of p. Therefore, since GxM = dy, there exists a sequence
(p1)ien such that p; € supp(M), G(p;) = 0, and p; —; p in Pp(C). By the continuity of G, we
obtain that G(p) = 0, which shows that supp(M) C G71({0}). Since G is arbitrary, we obtain
that supp(M) C Vp, = (Ngeg, G~'({0}), and the theorem is proven. O

5.3 Proof of Theorem (1]

Throughout this paragraph, we assume that 1 < p < 2.
We define the following collection (M;* : ¢t > 0,n € N*) of r.v. on P(P,(C)):

1 t
Mtn = ;/O 5¢S(mn)ds. (36)

Lemma 8. The collection of r.v. (M*, t>0,n € N*) is tight in P(P,(C)).

Proof. Based on Lemma [Il we just need to establish that the family of measures (I(M;")) is
relatively compact in the space P(P,(C)). Recall that I(M]*) is the probability measure which, to
every Borel subset A C P,(C), associates:

I(M?)(A) = % /O P(®,(m") € A)ds
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Consider € > 0. By Prop.H] there exists a compact set K € Pp(C) such that P(®,(m"™) € ) > 1—¢,
for all s,n. As a consequence, I(M]*)(K) > 1 — e. The proof is completed. O

Let us denote by .# the set of weakx accumulation points of the net ((M[*)4P :t > 0,n € N*),
as (t,n) — (00, 00). By Lemma[8, .# is a non empty subset of P(P(P,(C))). Define:

Vo ={M € P(P,(C)) : M(V,)=1}.
Lemma 9. For every Y € 4, Y(V,) = 1.

Proof. Consider YT € .#. Without restriction, we write T as the weakx limit of some sequence
of the form (M )xP. The distance Wy(.,V,) to the set V, (which is non empty by Prop. [)
is a continuous function on P,(C). Denoting by (., .) the natural dual pairing on Cy(Pp(C)) x
P(Pp(C)), the function (W,(.,V,), -) is a continuous on P(P,(C)). Thus, the sequence of real r.v.
(Wp(.,Vy), M{") converges in distribution to (W, (.,V}), -)4 Y. These variables being bounded,
we obtain by taking the limits in expectation:

//Wp(m,Vp)dM(m)dT(M) = lim E((W,(.,V,), M;"))

n—oo

1 n
lim _/0 E(W,(®4(m™),V,))ds

n—oo n

< limsup  E(Wp(®¢(m™),V,)) =0,

(t,m)—(00,00)
where the last equality is due to Prop. [l As V, is closed by Prop. 2] this concludes the proof. O

Recall the definition of the shift ©; : z — x4 defined in C. For every ¢t > 0, define (O)xx =
((©¢)#)#. Define:
7= {M S P(Pp(C)) VYVt >0,M = (@t)##M}.

In other words, for every M € Z and for every ¢t > 0, (©;)x preserves M.
Lemma 10. For every Y € 4, Y(I)=1.

Proof. Similarly to the proof of Lemma[d, we assume without restriction that T = lim,, o (M]" ) 4P
in the weakx sense. Set t > 0. The map M — dr, (M, (©;)xxM) is continuous on P(P,(C)), where
we recall that dy, stands for the Lévy-Prokhorov distance. Thus, by Fatou’s lemma,

/dL(M, (©¢) g M)dY (M) < limsup E(dr (M;" , (O)44M;")) . (37)

n—oo

Note that:

1 [ttt
(@t>##M7:l = a /t 5(@3)#mnd8.
In particular, for every Borel set A C Py(C), |(Or)pxM{ (A) — M (A)| < 2t/t,. The Lévy-
Prokhorov distance being bounded by the total variation distance, dr (M}, (0¢)44M{" ) < 2t/t,
which tends to zero. The L.h.s. of Eq. 1) is zero, which proves the statement for a fixed value of
t. The proof of the statement for all ¢, is easily concluded by a using dense denumerable subset
argument. O

Define: B, = {M € P(P,(C)) : M(BC,) =1}.
Proposition 13. For every Y € 4, Y(B,) = 1.

Proof. Consider an arbitrary sequence of the form ((M]' )xP) where ¢, — oo, converging in dis-
tribution to some measure Y € .# as n — oco. By Lemma [0} the map (04)x : Pp(C) — Pp(C)
preserves the measure M, for all M Y-a.e., and for all t. By Lemma [0, M(V,) = 1. Thus, the
restriction of the map (©;)x to V), still denoted by (0;)4 : V, — V,, preserves the measure M as
well, for all M T-a.e.. By the Poincaré recurrence theorem, stated in Theorem 2.3 of [Man87], it
follows that M (BC,) =1 for all M T-a.e. O
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Proof of Theorem[dl. To conclude, assume by contradiction that the conclusion of Theorem [I] does
not hold. Then, there exists € > 0 and a sequence, which, without restriction, we may assume to
have the form ((M{*)4P), such that for all n large enough,

E((Wp(.,BCy), My )) > ¢, (38)

where (., .) is the natural dual pairing on Cy(P,(C)) X P(P,(C)). By Lemmal8] one can extract an
other subsequence, which we still denote by ((M")4P), converging to T € .#. As a consequence,

lim E((W,(.,BCyp), M{")) = //Wp(m,BCp)dM(m)dT(M) =0,

n—roo

where we used the fact that, due to Prop. I3, [ 'Wy(m,BC,)dM (m) = 0 for T-amost all M. This
contradicts Eq. (B8]). O

5.4 Proof of Corollary [l

Throughout this paragraph, we assume that 1 < p < 2. Consider the r.v.

Yo (s) := W, (% > i, (m0)4 Bcp> :

i=1
Lemma 11. The r.v. (Y,(s)? : s > 0,n € N) are uniformly integrable.

Proof. Note that Y,(s)? < C(1+ 1%, || X:"||?). Hence for a convex function F : R% — R, by the
exchangeability stated in Assumption Bl we obtain E(F(Y,(s)P)) < E(F(C(1+ Y, |X:™|P))). By
de la Vallée Poussin theorem, the random variables (Y, (s) : s > 0,n € N) are uniformly integrable
if the random variables (|| X1"||P : s > 0,n € N) are uniformly integrable. We conclude using
Assumption @) if p < 2, or Assumption @) if p = 2. O

Recall the definition of M in Eq. (34, and recall that .# is the set of cluster points of
(M)#P:t>0,n e N*) as (t,n) = (00,00). Consider an arbitrary sequence ¢, — oo, such that
(M} ) 4P converges to some measure T € .#. Consider ¢ > 0. By Lemma [IT} there exists a > 0
such that sup,, g E(Y,.(s)1y, (s)>a) < €. Using the inequality y < a Ay + yl >4, we obtain:

E (% /Ot" Yn(s)ds> <E <% /Otna/\Yn(s)ds) te

=5 ( [anWylmem. ()y B (0)) < (39)

The restriction of 7 to P, (C), which we still denote by 7o, is a continuous function on (P,(C), W,) —
(Pp(RY),W,), where W, represents the p-th order Wasserstein distance on P(R?). As a con-
sequence, the pushforward map ()4 : P(Pp(C)) — P(P,(R?)) is continuous. Therefore, as
(m0)# BC, is non empty by Prop. Bl the function M — [a A Wy((mo)xm, (7o) BCp)dM (m) is
bounded and continuous on P(P,(C)). Recall that M converges in distribution to T, and noting
that, by Prop. Bl

//Wp((ﬂo)#m, (7o) BCp)dM (m)dY (M) =0.

Therefore, by letting n — oo in Eq. ([3J), we obtain limsup,, E(& fot" Y,.(s)ds) < e. As e is
arbitrary, '

. Lo
nh_}n;OIE (E/o Yn(s)ds) =0. (40)

In order to establish the statement of Corollary[ll we now should consider replacing the integral in
Eq. (@0) by a sum. This last part is only technical. Recall the definition of k; := inf{k : Zle i >
t}, and 7 in Eq. @). Let (o) be a sequence of integers tending to infinity. By the triangular
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inequality,

(Zz 5 Wolpts (o) BCp)) :]E(

1 Ton
Zz 1M T_/o Wp(u}is, (70)# BCp)ds)

Qn

1 [Ten
<E T—/ Wy (u Zéxm

ze[n]
7an

The second term in the righthand side of the above inequality tends to zero by Eq. {0) with
tn = Ta, . We should therefore establish that the first term vanishes. For an arbitrary integer [
and s € [1, 741],

1/p
1 i,m vi,n
E p Ml 9 Z 6X1" S E E Z HXl’ _Xs’ H;D
i€[n]
< (B(IX,)" = X3m(P)MP

where the last inequality uses Jensen’s inequality and the exchangeability assumption. Continuing
the estimation,

1,n n 1,n
E(|X;" = X2"P) < E(1X55 - X, ")

+E |:3p 1’}/l+1p/2 Hgl_,_l

]

_ 1 n i ll?
<E |3 1%’115 > Hb(Xll’ ,XP)

JEn

where we used Assumptions[Il and Bl Consequently,

+E |:3p 17[.;.1 H<l+1

2
< COPE+70),

o 9 1/p
D (C(Vﬁl +71p+1))

1 Tan 1 =
— W v y 5 vi,m dS < o
Tan, /0 p(ﬂks n iez[n] X ) N D

As Assumption Pl holds, C('ylpﬁ + 'ylpﬂ) —1o00 0, and Y7, v = 0o. Therefore, by Stolz-Cesaro
theorem, the r.h.s. of the above inequality converges to 0 when n — oo. Hence,

lim E (Zla_nl ’YZWP(IG"[’Z’ (WO)# BCP)) — 07
n—0 Zl:l ’yl

for an arbitrary sequence («,,) diverging to co. By Markov’s inequality, Corollary [l is proven.

5.5 Proof of Theorem
We let the assumptions of the theorem hold.

Lemma 12. For a nonempty compact set K C Pp(Rd), it holds that

lim max W,(¥,(v),A,) =0.

t—oo veK
Proof. Assume for the sake of contradiction that
Je > 0,3(vpn) C K,3(t) — o0 such that W,((Ty, (vn), 4p) > €.

Choose § > 0 small enough so that the d-—neighborhood A9 of A, for the distance W, is included
in the fundamental neighborhood of A,. Up to taking a subsequence, we can assume by the
compactness of K that there exists v, € K such that v, —, v. Since A, is a global attractor,
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there exists T' > 0 such that W, (Y7 (vs), Ap) < 6/2. Furthermore, by the continuity of ¥, there
exists ng such that

Vn>ng, Wp(Ur(), ¥r(vs)) < d/2.
This implies that Up(vy,) € Ag for all n > ng. Since Ag is included in the fundamental neighbor-
hood of Ay, there exists T > 0 such that

Yn > ng, Vt > T, Wp(\IITth(Vn)a AP) <eg,

and we obtain our contradiction. O

We now prove Theorem [2I Recall that the collection {®;(m™)} is tight in P,(C) by Prop. @
Let (tn, pn) be a sequence such that (t,,@n) —n (00,00) and such that (P, (m?#)), converges in
distribution to M € M as given by ([I2)). To prove Theorem [2 it will be enough to show that

Vé,e>0,3T >0, limsupP (W, (mfnfl+T, A,) >0) <e.

This shows indeed that .
Wy (my, Ap) ——— 0,

(t,n)—(o0,00)

and by taking ¢t = 7 and by recalling that m7, = uj, we obtain our theorem.

Fix § and e. By the tightness of the family {®;(m™)}, there exists a compact set D C P,(C)
such that P(®,(m™) € D) > 1 —¢/2 for each couple (¢,n). This implies that M (D) > 1 — /2
by the Portmanteau theorem. Since V,, is closed by Prop. [ the set £ = DNV, is compact in
Pp(C), and by consequence, it is compact in V,, for the trace topology. By the same proposition,
M(V,) =1, therefore, M(K) > 1 —¢/2.

Since P,(C) is Polish, we can apply Skorokhod’s representation theorem [Bil99, Th. 6.7] to the
sequence (@, (m#")), yielding the existence of a probability space (€2, F,P), a sequence of P,(C)~
valued random variables (/") on  and a Pp(C)—valued random variable m> on Q such that
(rh”)#ﬁ = (Dy, (Mm¥)) 4P, (Thoo)#ﬁ = M, and m™ — m> pointwise on 2. Noting that m{"
and Mm% have the same probability distribution as P,(R%)-valued random variables, we show that

37 >0, limsupP (W, (m4, A,) >06) <e. (41)

to establish our theorem. Observing that the function p — () #p is a continuous P(C) — P,(R?)
function, the set K = (m9)4K is a nonempty compact set of P,(R%). Applying Lemma [[2 to the
semi-flow ¥ and to the compact K, we set T' > 0 in such a way that

max W,(Ur(v), 4,) < 6/2.

veK
By the triangular inequality, we have
Wy (g, Ap) < Wy (i, m7) + Wy (M7, Ap) -

The first term at the right hand side converges to zero for each @ € Q by the continuity of the
function p — (mr)xp, thus, this convergence takes place in probability. We also know that for P—

almost all @ € Q, it holds that m> € V,,. Thus, regarding the second term, we have m3 = Ur(mg°)
for these w, and we can write

B (W, (5, 4,) > ) < B(m™ ¢ K) + B (W, (Ur(h®), 4,) > 6) N (€ K)).

When m§° € K, it holds that W, (Ir(m), Ap) < §/2, thus, the second term at the right hand

side of the last inequality is zero. The first term satisfies P (m™> ¢ K) =1 — M (K) < ¢/2, and the
statement (4I]) follows. Theorem [2is proven.

6 Proofs of Section [4.1]

The Assumptions [l and ¢ > 0 are standing in this section.
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6.1 Proof of Prop.

Lemma 13. Let p € Vy. For everyt > 0, p; admits a density x — o(t,x) € C1(R% R). For every
R > 0,ta > t1 > 0, there exists a constant Cry, +, > 0 such that:

i ! 20 42
te[thtlzI]lszHSRg( ’z) Z VYRt1,t2 s ( )

and there exist a constant Cy, +, > 0, such that

sup [|Velt,a)| + oft.) < oy (43)
zERY tE(t1,t2]
Finally,
sup [ (14 of) [ Velt, )] do < oo (44)
telt,t2]

Proof. The result is an application of Th.1.2 in [MPZ21] with the non homogeneous vector field
b(t,z) := [ b(x,y)dpi(y). The proof consists in verifying the conditions of the latter theorem. By
Assumption [ for every (z,y,T) € (R)? x Ry,

sup [[b(t,2) ~ bt )| < [VV (@) - VV ()]

te OT
+ sup / VU (2 — 2) — VU(y — 2| dpa(2)
t€[0,7)
<C(llz—ylI” v |z —yl),
Moreover,
sup b(t,z) < C(1+ ||z| +/ sup |lyell dp(y)) < C(1 + [|z]). (45)
te[0,T] te[0,T1]

As 0 > 0, [MPZ21l, Th. 1.2] applies: p admits a density = +— o(t,z) € C*(R9), for 0 < t < T, and
there exists four constants (C; 1, \i,r)ie[2], such that:

1 r—0:(y 2
Cy rtd/? /exp ( ” A1 tT(t A ) dpoly) < oft,7)

C A
ott.a) < S5 [ew (<25 o - 0017 ) donto)
Cor Ao 2
IVetta)l < iy [ (<220 e = 0.1 ) e,

where the map ¢ — 6;¢(y) is a solution to the ordinary differential equation: det( ) = = b(t, 0,(y))
with initial condition 6y(y) = y. By Gronwall’s lemma and Eq. {T), there ex1sts a constant Crp
such that [|6:(y)|| < Crl|lyll, for every n,y, and ¢ < T. For every t; < t < tq, and every x, we
obtain using a change of variables:

_ _ 2 2C
(€Lt 2 60,0) 2 Cuaaty " exp (~ 2ol [exp (= ) douty

[ el 1vett. )] do
< Caonty 0 [ 200l 420, [ InlFami)esn (ot [of) da

and ||[Vo(t,z)|| < Cg,tth(dH)/Q. Consequently, p satisfies Eq. (@2)), Eq. [@3)) and Eq. ([@4). O

For every p 6 Vs and every t > 0, recall the definition of the velocity field v; in Eq. (I8):
v(z) == =VV(z) — [ VU (z,y)dp:(y) — 02V log o(t, z), where o(t, z) is the density of p; defined in
Lem. I3
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Lemma 14. For every p € Vo, and every to >t > 0,

[f/mummwﬁ<m. (46)

Moreover, for every ¢ € C°(Ry x R% R),

/¢m 2)dpe, (2 /¢m 2)dpe, ( / /a¢mz Vol @), o (0))pi(da)dt . (47)

Proof. The first point is a consequence of Lemmal[[3l Consider ¢ € C°(R4,R) andn € C°(R,,R).
Using Eq. (I0) and () with hy = --- = h, = 1, we obtain that for each ¢ € C°(R; x R% R) of
the form 1 (t, ) = g(t)d(),

[ ottasa)dpia@) ~ [ vitr.)dpn (o) =

/t /((%1/}(15,:0) +(Vap(s,2),b(x, pi)) + oA (t, z))ps (da)dt . (48)

As the functions of the form (t,x) — g(t)¢(z) are dense in C®°(R; x R4 R), Eq (@S8) holds in
fact for any smooth compactly supported . Using Lemma [[3] and an integration by parts of the
Laplacian term, Eq. (7)) follows. O

The goal now is to establish that the functional .77 is a Lyapunov function. This claim will follow
from the application of Eq. ([d7) to the functional (,z) — o2 log(o(t, z))+V (z)+ [ U(z—y)o(t, y)dy.
However, this function is not necessarily smooth nor compactly supported. In order to be able to
apply Lem. [[4] mollification should be used. In the sequel, consider two fixed positive numbers
to > t1.

Define a smooth, compactly supported, even function n : R? — R, such that [ n(z)dx =1,
and define 7n.(z) := e 9n(x/e) for every ¢ > 0. For every t > 0, we introduce the density
0c(t,+) := e *pe(t, ), and we denote by pf(dx) = (¢, z)dz the corresponding probability measure.
Finally, we define:

e ._ Ne* (vio(t, )
v = ———— "
Qe (t; )
With these definitions at hand, it is straightforward to check that the statements of Lem. [I4] hold
when p, v, are replaced by pf, v§. More specifically, we shall apply Eq. [@T) using a specific smooth
function ¢ = 1. 5 r, which we will define hereafter for fixed values of §, R > 0, yealding our main
equation:

/we,é,R(tan)Qa(t%-T)d-T_/we,é,R(tlax)Qa(tlax)dx =
to
/t /(8,51/)515713(@ x) + (Vbe 5, r(t, ), v (x))) 0 (¢, x)dxdt . (49)

We now provide the definition of the function v, 5 r € C° (R4 x RY, R) used in the above equality.
Let 8 € C*(R,R) be a nonnegative function supported by the interval [—t;,¢1] and satisfying
[O(t)dt = 1. For every & € (0,1), define 05(t) = 0(t/5)/5. We define 0=°(-, x) := 05 * 0°(-,x). The
map t — 9575(15,5 is well defined on [t1, 2], non negative, and smooth in both variables ¢,z. In
addition, we define V. := 1. *V, U, := n.+U. Finally, we introduce a smooth function x on R? equal
to one on the unit ball and to zero outside the ball of radius 2, and we define xr(z) := x(z/R).
For every (t,z) € [t1,t2] x R, we define:

¢a&R@ﬂﬂ::(UZng&%ﬁz)+‘§@ﬂ*:/[@Cf‘4UXRQHQ&%ﬁyﬁﬁUXR@Q- (50)

We extend 1. 5 g to a smooth compactly supported function on Ry x R? and we apply Eq. @)
to the latter. We now investigate the limit of both sides of the equality [@9) as d, e, R successively
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tend to 0,0, co. First consider the lefthand side. Note that for all ¢ € [t1, 2],

lim hm Ve 5. r(t, x)0e(t, )

= (02 log o(t, z) + V (z) +/U(w - y)XR(y)@(t,y)dy) o(t, z)xr(x).

The domination argument that allows to interchange limits and integrals is provided by Lem
Indeed, for a fixed R > 0, there exists a constant Cg such that 0= (¢,2) < Cg and 9. 5. r(t,7) < Cr
for all ||z]| < R and all ¢ € [t1,t2]. As a consequence,

lim lim /7/15,6,R(t, r)o.(t,x) = o? /XR(:c)g(t, x) log o(t, x)dz+

e—=06—0
[ V@) + [ Ut = et oot pdsdy.

Since p; € P2(R?), [o(t,z)|logo(t,z)|dz < oo, and the first term in the r.h.s. of the above
equation converges to o? f o(t,x)log o(t, z)dx as R — oco. Similarly, [V (z)xr(z)dpi(z) tends to
J Vdp: as R — oo, by use of the linear growth condition on VV in Assumption Bl along with the
fact that p; admits a second order moment. The same holds for the last term. Finally, we have
shown that, for every t € [t1,t2],

fim i iy [ v (8 0)0- (1, 2)ds = # (1) + 5 [ [ Ul = y)dpo)am(o).

R—o0e—=046—

where we recall S (p;) := 02 [logo(t, )dp: + [Vdp + 3 [[ Uz — y)dp:(y)dpi(z) . As é,e, R suc-
cessively tend to 0,0, co, we have shown that the Lh.s. of Eq (@9) converges to:

Hlpw) = #pu) + 5 [ [ U6 = pdpuwidonta) = 5 [ [ U6 -y wipntz). 61

We should now identify the above term with the limit of the r.h.s. of Eq. ([@9) in the same regime.
The latter is composed of two terms. First consider the second term:

/t 2 / (Ve 5.1t ), 05 (2)) p5 ()t = / 2 / (Ve .1t 7). * (vr()a(t, ) dd

We can let 6 — 0 in this equation and interchange the limit and the integral. This is justified by
Lem. I3 which implies that for every R > 0, there exists a constant Cr such that for every ¢ > 0,
§€(0,1),t € [ty,ta], » € RY,

Ve s.r(t z)| < Cr. (52)

Using Eq. (52)) along with Eq. ({@6]), the dominated convergence applies. Letting & — 0 in a second
step, the exact same argument applies, and we obtain:

t2
lim lim /(Vw6,57R(t,x),vf(m))gg(t,x)dxdt

e—=06—0 J;

/ /hn% (%Hn Ve 5.r(t, ), e * (v (z) (¢, z)))dzdt
t e—=06—0

/ ’ / V(lim lim . 5 r(t, z)), ve(z))o(t, x)dzdt

e—=046—0

where the interchange between V and the limits is again a consequence of Lem. We now write
the gradient in the above inner product. Note that:

lim lim . 5 r(t,z) = (0% log o(t, z) + V (z) + / U(r —y)xr(y)o(t, y)dy)xr() .

e—=06—0

‘We obtain:

t2 t2
lim lim / (Vbe s.1(t,2), 02 (2)) 0 (¢, @) dwdt = — / / e (@) P (@) o(t, 2)dadt
e—06—0 t th

- [ [, [0 xx@) VU = nan@)xataan)
- / 2 / (0e(@), Vxr(@)(V(z) + / Ux — y)xr(y)dpe(y))dpi(x) . (53)
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By the dominated convergence theorem, Assumption[fand Eq. (@), the last two terms in the r.h.s.
of Eq. (53)) tend to zero as R — oo, while the first term is handled by the monotone convergence
theorem. We thus obtain:

lim lim lim / : / (Ve 5.1t 2), 05 (2)) 0. (¢, 2)dwdt = — / i / o (@) |Po(t, 2)dadt . (54)

R—00e—006—0 J,

As a last step, we should evaluate the limit of the first term in the r.h.s. of Eq. (9)), which writes:

ttf J Obe,s,r(t, x)0:(t, x)dxdt . Here the domination argument allowing to interchange limits and
integrals requires more attention, and is justified by the following lemma, whose proof is provided
at the end of the section.

Lemma 15. Let ty >t > 0 be fized. For every R,e > 0, there exists a constant Cr. such that
for every § € (0,1), t € [t1,t2], v € RY,

|at1/]8,(5,R(tax)| S CR,E bl (55)
for every t < T, 6 >0, and every x € R%.

By Eq. (55) and by the continuity of the map ¢t — 9:0° (see the proof of Lemma [IH), we can
expand the first term in the r.h.s. of Eq. ({#3)) as:

/ /8t1/)€ s.r(t,x)dp; (x)dt = / /8,57,/)5 s.r(t,x) (t, x)dzdt + oz r(9), (56)
where o r(d) represents a term which tends to zero as 6 — 0, for fixed values of &, R. Note that:

20107’ (t, )
09 (t, x)

Plugging this equality into (B6) and noting that U, is even (because U and 7. are), we obtain:

tbes.nlts ) = xR@a+1/ceurfwa@anu»@g&%ayy@. (57)

ta
/ /atwe,é,R(t, 2)0%° (t, z)dwdt
t1

ta
= 02/ /8tg€(t,x)XR(:c)d:cdt
ty

+ % /t // Us(z — 9)0:(0°° (t, ) 0™’ (t, ) xr(z) X r(y)dwdydt
= 02/Q€75(t2;1')XR(1')d1' — UQ/Qs,J(tl,z)XR(z)dz

Jr%//Us(z*y)XR(x)XR(y)QE’é(tQ,x)ge’é(tg,y)dzdy

- % //Ua(w —)xr@)xRr ()00 (t1, 2) 0 (t1, y)dxdy .

By the dominated convergence theorem, we finally obtain:

ta
lim lim lim /atw&(s,pb(t,x)dpf(x)dt =

R—00e—06—0 J,

5 [ [ —ettavtta sy 5 [ [U6 ot aetts sty (9

Putting together Eq. (B1)), (B4) and (E]), and passing to the limit in the continuity equation (@9J),
the statement of Prop. [ follows.

Proof of Lem. Using Eq. (49) and integration by parts,

0% (t2, @) — 0°(t1, )
/ / Ve (x = y), by, ps))dps(y)ds + o° /t2/ Ane(z —y)dps(y)ds .

t1
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Since p € P2(C), supse(s 1 16(y, p) | < C(1+ |lyll) + C [ supyepr 7y |2l dp(z). As a consequence,
supiep 7] [10(y, po)|l < C(1+ |lyll) . Along with the observation that, for any fixed e, V. and A,
are bounded, it follows that ¢ — 0°(¢, x) is Lipschitz continuous on [t1,¢2], and that its derivative
almost everywhere is given by: 9,0°(t,z) = [((Vn:(z — y),b(y, pr)) + An-(xz — y))dp¢(y). Thus,
there exists a constant C. > 0, such that:

sup  Go°(t,x) < Ce.
tEft1,t2],x€ERY

Considering the second term in the r.h.s. of Eq. (B7)), the presence of the product of the compactly
supported functions xr(z)xr(y) implies that the former is bounded in absolute value:

‘ [ Vete = i@ | < e

On the otherhand, using the lower bound (42), the first term in the r.h.s. of Eq. (&1), is also
bounded, and finally, Eq. (55]) follows.

6.2 Proof of Prop. [T

The map JZ : p +— H#(p.) is real valued and lower semicontinuous by Prop. B and Fatou’s lemma.
Moreover, for every p € Va, 72(®i(p) — 7(p) = H(prsc) — #(p) = — [ [ |[v,||dpyds.
Therefore, %(@t(p)) is decreasing w.r.t. ¢, and, as such,  is a Lyapunov function. In addition,
the identity #(®(p)) = H#(p) for all t, is equivalent to: v; = 0 pi-a.e., for every t > e. By
Lem. [[4 this implies that p; = p. for all t > €. Thus, 7 (®.(p)) = H#(p) for all ¢, if and only if
ve = 0 and p; = p. for all t. This means that His a Lyapunov function for the set A.. The first
point is proven.

Consider a recurrent point p € Vs, say p = lim ®;_(p). By Prop.B p € A, for any € > 0. This
means that there exists ;1 € S such that p, = p for all ¢ > 0. By continuity of the map (7o),
po = lim p; . Thus, po = . This means that p; = p for all t > 0, which writes p € Ag. The proof

is complete.

6.3 Proof of Prop. 8

Since 8 = 1, we obtain by Assumption [{ that VU and VV are Lipschitz continuous, therefore, the
functions U and V are weakly convex. Thus, we obtain from our assumptions that the functions
U and V with U being even are differentiable, weakly convex, and they satisfy the doubling
assumption. In these conditions, the following facts hold true by [AGS08, Th. 11.2.8] (see also,
e.g., [DS10]): for each measure 1y € Po(R?), there exists an unique function t — v, € P2(R?) that
satisfies the following properties:

i) vy > vpast 0.

i) sup /||x|\2ut(dx) < oo for each T > 0.
te[0,T)

iii) The measure v; has a density n; = dv;/d%? for each t > 0. This density satisfies 7; €
11
Li,.((0,00); Wy, (RY)).

iv) The continuity equation
8tut + V- (l/t’wt) =0

is satisfied in the distributional sense, where

702V77t(z)

wi(x) = (@)

— V() - / VU(z — yme(y)dy.

V) llwell g2, € Lise(0,00).
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Furthermore, the function ¢ + v4 is the solution of the gradient flow in Po(R?) of the functional
S provided in the statement, and w; € —95 (1), where 05 is the Fréchet sub-differential of
. From the general properties of the gradient flows detailed in [AGS08, Chap. 11], one can then
check that we can write v; = Uy(1) where VU is a semi-flow on Py (R?).

With this at hand, all we have to do is to check that for each p € Vs, the function ¢t — p; satisfies
the five properties stated above. The first two hold true for each ¢ € P2(C): to check the first one,
let X ~ (. Observe that X; —0 Xo by continuity and that || X; — Xo||* < 2supye(q 1) | X||* for ¢
small, and use the Dominated Convergence. The second property follows from the very definition
of P2(C). Property 3 follows from Lemma[I3l By Lemmal[l4] the continuity equation is satisfied by
the function ¢ — p; with v; = wy, hence Property 4. Finally, Property 5 follows from Proposition [6]
Equation ([&]). This completes the proof of Proposition [l

6.4 Proof of Prop.

In this paragraph, Assumptions Bl and [B] hold. Therefore, Assumptions [1l and [B] also hold. Let
k € N;n € N*. We recall Eq. ()

in in in Vk+1 in j,n @n
Xk+1 =Xy - 7k+1VV(Xk ) T Z VU(Xk - Xl]c ) + 27k+1€k+1 :
J€[n]

Let us momentarily drop the upperscript n to simplify the notations, and we write  as a shorthand
notation for vx4+1. Note that VU (—z) = —VU(z). We expand:

i i i i Y i j i i
1 4112 = IXE2 = 2V V(). Xf) = 22 S (VU (X = X)), X + 298
J
i i g i j
+ VAT 2 IVVXG) + = D VUG = X1
J

where we defined:

i i i i Y i j
Thyy = (&1, X —7VV(XR) — - ZVU(Xk - X7)).

J
Using Assumption Bl and Cauchy-Schwartz inequality, there exists constants C, A > 0 such that:
[ X[ < (1= Ay + C¥)IXE1* — 2% D (VUL = X0), Xi) + 29[| |1
J
+ V2T + P+ Y X (59)
J

Note that E(T},,|F}') = 0. As a preliminar, we first establish the bound:
sup (B IPIXEIP) + SEAXEY) < oc. (60)

,n

To that end, compute the average w.r.t. i € [n] of both sides of Eq. (5J). Setting Si := 1 Y, [ X} |2,
and

1 i Ny
XK = 3 ZZ<VU(Xk - X7), Xi)
i g
¢ 1 P2
Xk+1 EZ €kl
1 .
— T .

Eq. (59) leads to, for every k larger than some fixed constant,

T .
Xk+1 *

Sk < (1= M)Sk — 29XY +2vXG 1 + V27X Ee + 2.
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Moreover, using that VU (X} — X}) = —VU (X}, — X}), we obtain:
1 j i i j
XK = o2 ZZ(VU(X,i - Xp), Xi — X)) =2 —C.
v g

Therefore, Sk+1 < (1 — Ay)Sk + 27xi+1 + \/2fyx£+1 + C#, for large k. Raising to the square,

Sti1 < (1= M8 + (29Gr + V2741 + C9)? + CSe(27Xry + V20X +C) -
Thus, for large k,
ES?,y < (1= A)ESE + Cy’E(xji1)? + CHE(XE41)? + C72 + CYE(SkXG11) + CYESk .

Note that E((Xk +1) ) is bounded uniformly in k,n. Moreover, by Jensen inequality, E(Sk) <
VE(S?). Finally, using that E(Skxiﬂ) = do®E(Sk), we obtain:

ESii1 < (1= M)ES} + C* + CvE((xi41)?) + C7* + Cy\JE(S?).

We inspect the term E((Xngl)Q):
E((Xk41)?) = ZEHXk YV (X}) — ZVU Xi— X))
< QZEHXW 2SS A ST vueg - xpiy?
—n? L k T L\ L k k
7 7 J
< g E X’L 2 QQ l 1 X’L 2 Xj 2
—ngz | X5+ nQZnZ( + | X1+ 1 XEN7)

C C
e
n n

We finally obtain: ES7 ; < (1 — My)ESE + Cy* + Cy+/E(S?). This proves that ES} is bounded
uniformly in k,n. By the exchangeability stated in Assumption [, ES? = n~'E(]| X[|*) + (1 —
1/n)E(|XL12|X?]1?). This proves Eq. (G0).

We now expand || X}, ,||* starting from (B). We define VU* := n~' 37, VU (X} — X}). For all
k large enough,

X5l < (1= AN + (= (VU X5) + 29016417 + V29 Ty + Cy* (1 + Si))?
= 29(VU", X)Xk + 2916k P12 + 2y T 1XENP + Oy X121+ Sie)

We take expectations in the above equation. Note that E||&], [|* < C, ESE < C and E(||&],,]1?[| X} ) <

CE| X!||* = CE(Sy) < C (where as usual, C' changes at each mequahty) Thus

E|Xpall* < (1= yNEIXL* + Cy*E(VU", X})? + CYE((Ti11)*) + Cy
— 29E(VU", X)) | Xk + Cy*E(11 X517 Sk).
It is straightforward to show that E((T},,)?) < C(14++°E(||VU"|?)) and that, in turn, E(|VU"||* <

C(1+ESk) < C. Thus, E((T} H)Q < C. Moreover, by Cauchy-Schwartz inequality followed by the
triangular inequality,

7 1 j i
E(VU', X})* <E(= > [VU(X] - X))|*IIX} )
J

3

1 i j i
< CE( D O+ X + 1IXLI) X7
J
< C+ CE[| X3 |I* + CEI X, I X2

Note that the last term in the above inequality is bounded uniformly in &, n, by Eq. (60). Changing
again the constants C, \, we obtain that for large k,

B[l XG [l < (1= yNEIXLN* = 29E(VUT, XX )? + C.
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The crux is to estimate the term —2yE(VU’ X})||X}|>. By exchangeability, and using that
vU(0) = 0,

E(VU", Xp)lIXE]* = — D E(VU(X; - X{), X0 | X
i
n—1

= ( JE(VU (Xg — X0), Xp) | Xl

Moreover, using that (VU (X! — X?), X! — X?) > —C,
E(VU(Xg = Xi), Xp)IX31* > —CE|Xg|” + E{VU (X;, — X7), X0 || X]|°]

> —CE[| X |” - E[IVU(Xg — XD)IXZN Xk

> —CE||X;[|* = CE[(1 + [ Xg [l + IXZIDIXENIX5 )

> —C(E Xl +ENXEIIXE 1] + B XEIPI1 X517 + 1)

> —CE[IXZX.°] - C,

where we used the fact, proven above, that E|| X}||? and E[||X?||?||X}||?] are bounded, uniformly
in n, k. The term E[||X?||[|X||?] can be handled by Cauchy-Schwartz inequality:

1 1 1
E[XZINXeIP) < EQXZIPIXE 1) *EN X 1= < CE(IXE[*)= -

‘We have shown that: o _ )
E(VU', Xi)|IXi|? > —CE(|| X3 ||1)2 - C.

Putting all pieces together,
E| X' < (1= yNEIXE[* + Cr/E(I XL + C.

This proves that E[ X}||* is bounded, uniformly in k,n. The proof is complete.

6.5 Proof of Th.

The convergence provided in the statement follows at once from Proposition 8 and Theorem 21 We
need to prove that S = Ay when As = {po}. For an absolutely continuous probability measure
dv(z) = n(x)dz € P2(R?) with € C1(R?, R), write

() = ~VV(x) - / VU (@ — y)n(y)dy — oV log(x).

With this at hand, using Equation (&) in conjunction with the identity poo = ¥¢(poo) for each
t > 0 shows that u,__(z) = 0 for poo—almost all . This shows that po, € S. On the other hand,
for v # ps in P2(R?), we obtain from Equation (I5) that the function t + 2 (W;(v)) is strictly
decreasing. Thus, [ |lu,||?dv > 0 which shows that v & S.

7 Proofs of Section
7.1 Proof of Prop. [10
We recall the iterations:

GZ’L =a;"(1 = Mes1)

Vht1 in gy d 3 %, i,
+ Y (g™ g™ al " — Q™) + Gy + V2§ -

J€[n]

We denote I, = %Zie[n] (afc’n)Q. The proof will be done in two steps. First, we will obtain a
bound on E(I},,). Then, we can bound E(a22)4 and the bound on E({;™)* follows easily. Observe
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that:

(apt)? = (ag™)2(1 = Mr1)® + (1= yea N ey (V274180 + r1$t)

Yk 1(17>\7k 1) i,n i,mn n ,mn
-2 N (K (wy wh M )ag" — Qwg™))

n
JEln]
Tk+1
+ ZKU}O ,wo ak +’yk+1ck+1+\/2’)’k+1§k+1 . (61>

Since K is a bounded positive semi-definite kernel, 3, .o ]a};’" (W™, wi™)al™ > 0. Hence, we
obtain:

1 @,n 1 i,mn 271@ 1 in i,n
=D (@) < = 3@ = M+ O ) T Y a" Qg+

i1€[n] i€[n] i€[n]
(1= Mgy1) C% 1 Zin i
% Z (W1 Gty + V2 €t ay n+ Z (M1 (G + (€30)7) -
i1€[n] i€[n]

Since ¢ is bounded, (511:1)2 < C(1+yiy + Irn), and

Iitrn < Ten(1 = 20941 + C41) + Cres1VIem + Crisn (L + yigs)
(1 - /\7k+1>
Tt Z (7k+1<k+1 v 27k+1§k+1 a;" + Oyt Z §k+1

i€[n] i€ [n]

We have E(§ |[F2) = E(¢1 | FR) = 0 and E(y2,, + (§71)%F2) < C. Raising to the square,
taking the expectation of the above inequality, for £ large enough, there exists X such that:

E[1Z110) SE[1Z,] (1= Smesn) + Copnn B[] + OmepsE D] + Cryr

The latter guarantees, supy , E {I,fn} < C. We will keep this in mind and now, going back to
Eq. (6T]), we obtain for k large enough:

1 i,n 1 in X C’Wv 1 in
|- (@™ <E|- Y (@) | (=) + 5B | Y (")
ie[n] i€[n] i€[n]
C
SR ST Jap P e+ 1) | + OB [12,] + Chdy . (62)
i,5€[n]

The larger term is controlled by Cauchy-Schwartz inequality

> e[l Plaitl] < 30\ el e] & [].

i,5€[n] i,j€([n]

Using the exchangeability, E(I{ ,,) = %E(a}c’")4 + %E(a}c "a>™)? and:
1 N _J,m\9 1M\ 4
ﬁz E[(ak ak)} E[(ak)}

= Lol + 222 Jo a2 e [y ]

N e




Finally, from Eq. ([62)), the bound on E(I zn), and for k large enough, we obtain

E[(af)'] <E |(@if)*] (0= dwen)
v ot (ot ] o [l oot

Consequently, supk,nIE(a,lc’fl)4 < 0o. Remarking E(¢;™)* < CE(a}™)*, Prop. I is proven.

7.2 Proof of LemM]

Define A, : w — [adp(alw) and B, : w — fa2d,u a|w) We use the notation K f(w) :=
[ K(w,w")f(w")dw(w). Moreover, we denote by ( = [f(w dwo(w) the inner prod-
uct in L?*(w). Define the constant ¢ := [y?dv(x y) Expandmg RO( ), we obtain after some
straightforward algebra:

A
Ro(p) = (A, Ko Ay — Q) + ¢+ 5 /Budw.
Therefore,

Ro(n) — Ro(k")
B, — B~
= <Au’KwAu>w - <Au*’KwAu*>w —(Q, A, — AH*>W +A fdw

B, — B,
Z <KWA#* — Q,A# — A#*>w + )\/ %dw, (63)

where we use the fact that (A4, — A+, Ko(Ay — Ay ))w > 0 to obtain the last inequality.
By [AGS08, Lem. 12.4.7], there exists a Borel map on R?™! — P,(R x R) which, to every
w € R¥1 associated a probability measure v(-|w) € T (u«(-|w), u(-|w)), where we recall that
9 (p* (-|w), u(-|w)) is the set of 2-Wasserstein optimal transport plans between p*(-|w) and pu(-|w),
as introduced after Eq. (§). We obtain:

Bult) ~ Bue(0) _ / > —a?

9 dv(ax, alw)

:/a*(a—a*)dy(a*,a|w)+/wdv(a*,alw%

Substituting this inequality in Eq. (63]), and expanding the first term in the r.h.s. of Eq. (63) as a
function of (- |w), we obtain:

Ro(u) — Ro(u*) > / (Ko Ay () — Qw) + Aa)(a — a.)d(an, alw)dz(w)

v [ [t ” dr(a, auw)dw ().

Note that KA, (w) — Q(w) 4+ Aaw = —b((ax, w), u*). We obtain:

Rolk) - >~ [ [ M@ a - a)dr(a. afu)dsw)

+/ / Lt alu)d(w) . (64

We now study R, (1) — Re(p*) for o > 0. We make the assumption that (- |w) admit a density
for wo-almost every w, which we denote by p(ajw) (in the opposite case, R ( ) = 400 and there is
nothing prove). Then, R, (u) = Ro(u) + 02 [ Cp(w)dw(w), where Cy(w) := [log p(a|w)u(da|w).
Since [ 9, (log p* (a|w))*du(ajw) < oo for p*-a.e. w, one is able to apply [AGSOS 10.1.1.B, Prop.
9.3.9, Th. 10.4.6], which yields:

Culw) = Cpr(w) = [ (a a)dulogu (alw)dy (s, alw).

Putting all pieces together, the result is complete.
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7.3 Proof of Lem.

The proof is provided in the case where o2 > 0 (the arguments are simpler when 0% = 0). By
Remark 2] the first point is immediate: 7xp: = w for all .

In order to establish the result, one has two options. The first alternative is to follow step
by step the proof of Prop. In the case 02 > 0 (the case 02 = 0 being easier), we establish
using [MPZ21], that p;(.|w) admits a density w.r.t. £, which satisfies regularity conditions. In
particular, one can prove L? S llvp,lldpedt < oo for all t5 > t; > 0. Then, by integration by part,
it is easy to establish the following continuity equation:

Oipr +V 05,00 =0,

in the sense of distributions on C2°([t1,t2] x RY). Using the continuity equation along with the
molification technique used in the proof of Prop. [[l Eq. 23] follows. Now, Eq. ([25) proves, as a
byproduct, that fttf J Nlvp, lI?dpedt < oo, which implies Eq. 24). The proof is concluded.

An alternative proof consists in using the concept of gradient flows on P(R?). Consider the
functional F(u) which coincides with Ry (u) if 7gp = w, and Fo(u) = +oo otherwise. By
[AGS08, Th.11.2.1], there exists a locally Lipschitz curve, say (u:), defined on any interval of the
form [0, T, such that pu; — po as t — 0, and whose velocity field (v;) satisfies —v; € OF o (pt). It
holds that fOT ||lve]|?dpedt < oo by definition of the velocity. Also using the same result [AGS0S,
Th.11.2.1), Re () — Re(pe) < — Ji2 [ vi|®dpedt for all ty > t; > 0, since F = R, along
the curve (p¢). Using [AGS08, Th. 10.4.6] and the same derivations as in the proof of Prop. @]
we establish that v, = (9,,,0). Moreover, by [AGS08, Th. 8.2.1], there exists a measure on
p € P(C([0,T]) such that p, = p; for all ¢, and such that &; = v, (z¢) for p-almost every z,
and almost every ¢t. Thus, on [0,7], p satisfies the martingale problem given in Def. [Il As, by
[CD22] Prop. 1], this problem has a unique solution, we obtain that p coincides with (7o 77)4p-
In particular, p; = p.

A Technical proofs

A.1 Proof of Proposition [

Let I C R, we denote by C(I,R%) the set of continuous function from I to R?. One can show,
that (p,,) is a Cauchy sequence in the complete space (P,(C([0, k], R%)), W,). Thus, there exists a
sequence of compact sets (Kj) in C([0, k], R?) such that:

&
(0,41 ) on (K) > 1= o

for all kK € N*. Let K := (>, F[B}k] (Kj) C C. The union bound yields p,(K) > 1 — . Referring
to [Bou89, Theorem 2, Section X, Chapter 5], K has a compact closure in C. Hence, there exists
a converging subsequence (p,, ) converging to p € P(C). Following the proof of [Vil09, Theorem
6.18], one can readily check that lim, oo W ((70,x])%0n; (T[0,k))#p) = 0, for every k. Conse-
quently, lim, oo Wy (pn, p) = 0, which means the completeness of P,(C). It remains to obtain its
separability.

As C is Polish, there exists a dense sequence (z,,) in C. Following the proof of [Vil09, Theorem
6.18], one can construct a sequence (p,) in P,(C) from (z,,), such that ((mo r)xpn) is dense in
C([0, k], RY) for every k. With this result, it can be verified that (p,) is dense in P,(C).

A.2 Proof of Lemma

Since Prop. [[l holds, (I(p,)) is a weakx-relatively compact sequence in P(C), and there exists a
sequence of compact sets (K}) in C, such that

T(pn)(Ki) > 1 — —

K2k’
for every k € N* and every n € N*. Let € > 0. We define the relatively compact set in P(C):

1
K. = {p ePC) : p(Ky)>1— e for every k € N*, such that ke > 1} .
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The union bound and Markov’s inequality yields:
P(pp,eK:)>1—¢ (65)

for every n € N*.

In order to be relatively compact in P,(C), the set K. must satisfy Eq. (p-Ul). Since the
sequence (I(p,)) has uniformly integrable p-moments, there exists a sequence (a,1) (x,1e(n+)2, such
that for every [ € N*, limy_,oc ag,; = o0 , and

1
Vk,lEN*Q,suE/su el 1 qun laslisar  dpn(2) | < —r .
ol e 60 ”615* l te[ol,)l] el tz[o?u” (a0, Pn (@) K12+

For £ > 0, we define a set that satisfies Eq. (p-Ul):

1
Ues == pePp(C) : / sup [|2e]|° 1 sup jjoo|>ar, dp(x) < ==, for every k,l € N* 5 .
te[0,]] te(0,1] ' ekl

Using Markov’s inequality and the union bound, we obtain
P(pp€Us) >1—¢. (66)
Putting together Eq. (63) and Eq. (66l),
P(pn € KoNU:) >1—2¢.

Ke NU is a relatively compact set in P,(C). Thus, (p,) is tight in P,(C).

A.3 Proof of Lemma [3

Given G = Gy g hy,...hoit,s,01,..0n € Gp, we first want to show that G(p,) = G(poo) 88 pn — Poo
in P,(C). This last convergence is characterized by the fact that p, — poo in P(C), and that the
sequence (p,) has uniformly integrable p-moments as shown by (p-Ul)), which is written here as

=0 neN uw€l0,T]

VT > 0, lim sup/]l sup ||yu||>a ( sup Hyqu) dpn(y) =0.
w€e[0,T]
We write G(p,) = [ g(z,y)d(pn @ pn)(z,y), where for z,y in C:

gla,y) = <¢>(zt> = 0le) = [ (Vo). e +0*20(r) du) W),

and h(z) := H;:1 hj(z¢;). Using Cauchy-Schwartz inequality, we state a useful inequality:

sei<c i+ [ () ). (67)

where C' = ||h||, max (2||¢]| + 0%t —5) |[Ad] ., [[VP|ls). Note that pp ® pn — poo ® poo in
P(C x C). Furthermore, using the bound (67) for our function g, and observing that ¢ is the
maximum of the time snapshots intervening in the definition of g, we have for each a > 0

Sgg/ﬂ\g(z,y)|>a|g(xvy)|d(pn ®pn)(:c,y)

p

<sup [ 1 v (14t sup all | dpn(y),

neN C<1+t sup Hyul|>>a w€(0,t]
uw€lo,t]

therefore,

lim Sup/ﬂ\g(m,y)\>a|g(xvy)|d(pn & pn)(if,y) = 05

a— oo neN

which shows that G(p,) — G(p) by uniform integrability, and the first result of the lemma is
established.
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