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This paper presents the first experimental realization of a
scheme that allows for the tuning of the velocity of peak inten-
sity of a focal spot with relativistic intensity. By combining a
tunable pulse-front curvature with the axial intensity depo-
sition characteristics of an axiparabola, an aspheric optical
element, this system provides control over the dynamics
of laser-wakefield accelerators. We demonstrate the ability
to modify the velocity of peak intensity of ultrashort laser
pulses to be superluminal or subluminal. The experimental
results are supported by theoretical calculations and sim-
ulations, strengthening the case for the axiparabola as a
pertinent strategy to achieve more efficient acceleration.
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With the proliferation of femtosecond, multi-terawatt pulses,
high-power laser systems have become an essential tool in
scientific research. In particular, such laser systems, when cou-
pled to plasma, can produce a compact particle accelerator,
capable of generating high-quality proton, electron, and x ray
beams [1—4]. One such accelerator type, laser-wakefield accel-
erators (LWFAs) [5] — high gradient accelerators in which
electrons are trapped and accelerated in laser-generated plasma
wakes — can produce GeV energy-scale electrons in centimeter-
sized acceleration lengths [6]. LWFAs promise to contribute to
many applications, including cancer treatments [7] and next-
generation light sources [8]. There remain, however, a number
of limitations that prevent the achievement of ever higher ener-
gies [9]. These include the tendency of the laser to diffract [9] —
requiring guiding mechanisms to remain in focus [10] — and the
dephasing of the electrons from the wakefield [9], potentially
ending the acceleration before the laser is depleted [11].

The axiparabola, a long-focal-depth reflective optical element
that produces a quasi-Bessel beam [12], has generated interest
for its potential to overcome both beam diffraction and elec-
tron dephasing [13,14]. Beam diffraction can be overcome by
the diffraction mitigating propagation properties of the Bessel
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beam, which have been used to generate a high-quality wave-
guide for LWFA [15]. The axiparabola tackles the dephasing
issue through a combination of the peak intensity propagation
dynamics imposed by the axiparabola itself and a manipula-
tion of the pulse-front curvature (PFC) of the incoming beam
[13,14]. Through this combination, the velocity of peak inten-
sity can be tuned from subluminal (v<c) to superluminal (v>c),
allowing the wakefield to be phase-locked to the electron beam.
This paper presents the first experimental realization of a sys-
tem that promises to utilize the properties of the axiparabola in
order to achieve dephasingless acceleration. The manipulation
of the energy deposition velocity is achieved by combining an
axiparabola and a refractive doublet that modifies the PFC of the
beam. The experiment was performed with the HIGGINS 100
TW laser system at the Weizmann Institute of Science, which
produces nearly top-hat, 30 fs, 50 mm diameter pulses [16].

While superluminal energy deposition has been previously
demonstrated [17-19], this is the first experiment, to our knowl-
edge, that shows its feasibility using the axiparabola and, thus,
presents a road map for further optimization toward the even-
tual goal of dephasingless laser-wakefield acceleration. The
axiparabola-based approach, unlike the chromatic flying focus
[19,20], yields an ultrashort pulse duration since it does not
add chirp to the pulse. The axiparabola-based method is a
promising, experimentally simpler way to achieve dephasingless
acceleration.

The axiparabola has a radially dependent focal length, f(r),
with different annular segments focusing at different points on
the focal line over a segment known as the focal depth. A detailed
description of the axiparabola can be found in [12,21]. By
causing light at different radial distances to have different path
lengths to the optical axis, the axiparabola introduces a radially
dependent focusing time, #(r), and thus modifies the velocity
of the on-axis intensity propagation, v, = df/dt [13,14]. Here,
z =f — fo, where f; is the nominal focal length of the axiparabola.
Using ray optics and paraxial approximations, the velocity is
v./c = 1+ 7r2/2f* [14]. If the pulse incident on the axiparabola
has a radial delay 7(r), the velocity is modified [21]:

E:E(l_ﬁcd_‘rd_r). (1)
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This experiment used an axiparabola with the focal line distribu-
tion: f(r) = f, + 6(r/R)?, where 6>0 is the focal depth and R is
the total radius of the pulse. For such an axiparabola, and with
aradial delay caused by the pulse-front curvature of 7(r) = ar?,
the modified velocity, up to second-order terms becomes

N A A
(2)
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¢ s 2512 2
A more complete derivation may be found in Supplement 1.

The pulse-front curvature of the HIGGINS laser was meas-
ured using far-field beamlet cross-correlation (FFBCC) [22], a
self-referenced technique that utilizes far-field interferometry
and inverse Fourier transform spectroscopy. The method works
by scanning the delay between two beamlets and using the inter-
ference obtained by focusing them with a parabola to extract the
relative pulse delay. In the case of this PFC measurement, a2 m
off-axis parabola was used. Repeating this for different sections
of the beam maps the pulse-front delay [22].

The PFC control doublet, a lens designed to cancel out the
PFC which is introduced in the laser system due to the refractive
telescopes used to expand the beam [23], was placed inside of the
final telescope expansion stage of the laser. Details of the doublet
are provided in [22]. The doublet’s effect scales with the size
of the beam impinging on the doublet [24]. Thus, by changing
the doublet’s position inside the telescope, the PFC of the beam
can be controlled in amplitude and direction without changing
the focal plane and with minimal added aberrations. The PFC of
the laser chain was simulated using the Zemax OpticStudio ray-
tracing software. Two custom macros were used, one to calculate
the pulse-front delay and the other to simulate the intensity over
the focal depth. Details can be found in [25].

All experimental data was taken with the HIGGINS 100 TW
laser system. The laser was fully amplified and then attenuated
from 3 J to 8 uJ, so as not to damage the objective and CCD.
Apart from the focal spot diagnostics needed for FFBCC, which
are not necessary for an electron acceleration experiment, the
setup can be used with the full power beam. With no attenuation,
the B-integral through the doublet is orders of magnitude below
that which would result in significant nonlinear effects.

In the PFC measurement, three doublet positions inside of the
beam expansion telescope were used: 0 mm (directly after the
first lens), 65 mm, and 130 mm (middle point between lenses).
The modification of the PFC by the doublet increases with larger
values of the position inside the telescope as the beam’s size
grows. Data without the doublet was also taken. Figure 1 shows
the Zemax simulated PFC coeflicient « (orange) as well as the
experimentally obtained values for the 0 mm (blue), 65 mm
(red), and 130 mm (cyan) doublet positions and the no doublet
case (green). These values correspond to the « of Eq. (2). The
insets show the measured pulse-front delays. The dots are the
measured values for the pulse-front delay at that spatial point,
with the width of the dot showing the experimental error bar. The
colored surface shows the PFC fit of the radial delay. As shown
in the figure, the range of PFC allowed by moving the doublet in
the telescope gives the ability to partially and fully suppress, and
even invert, the PFC inherent in the refractive beam expansion.
Full suppression of the PFC takes place at a doublet position
around 75 mm. The simulations for the doublet-in cases agree
with the experimentally obtained values, while the no-doublet
case deviates slightly, likely due to experimental errors such as
mask misalignment.

Vol. 49, No. 4/15 February 2024/ Optics Letters 815

0.02

_IE 0.01F A, \
3 . 8
)
-0.02 3
0
© 0mm
{ o 65mm
-0.03 130 mm
©  No Doublet
Zemax Simulation
-0.04

0 65 130 260

No Doublet Doublet Pos. [mm)]

Fig. 1. Zemax simulated (orange) and measured PFC coefficient
a for 0 mm (blue), 65 mm (red), and 130 mm (cyan) doublet posi-
tions and the no doublet case (green). The insets show the measured
pulse-front delays. The dots are the measured values for the pulse-
front delay at that spatial point, with the width of the dot showing
the experimental error bar. The colored surface shows the PFC fit
of the radial delay. Black arrow shows the propagation direction of
the pulse.
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Fig. 2. (a) Setup of the PFC control doublet inside the final beam
expansion stage for two positions and with two resultant PFC values
for the beam. (b) Group velocity measurement setup in which the
beam impinges on the selector and the reference and test beamlets
pass through. The segmented mirror imparts a tunable delay to the
reference beamlet. Both beamlets are focused on the axiparabola,
and the interference is imaged onto a CCD through an objective.
Two radial offsets of the test beamlet are shown.

The axiparabola group velocity measurement, an overview of
which is shown in Fig. 2, was performed in air and was based on
a modified version of FFBCC. The measurement of the energy
deposition velocity utilized a specially designed beamlet selec-
tor mask that selects a test beamlet from a radially and angularly
tunable section of the beam and selects the central reference
beamlet. A variable delay is added to the reference beamlet by
impinging the beamlets onto a segmented mirror whose central


https://doi.org/10.6084/m9.figshare.24926067

816 Vol. 49, No. 4/15 February 2024/ Optics Letters

section is attached to a piezo actuator. The beamlets were then
focused by the axiparabola, and the resultant interference was
imaged using an objective and CCD. The imaging system was
moved to coincide with the focus of the test and reference beam-
lets, and a delay scan was performed for four radial offset values.
The resulting value for the delay difference for each radial slice
was extracted by finding the relative delay needed to achieve
maximum contrast of the interference of the two beamlets. Since
the reference beamlet at r = 0 corresponds to the place where
the average of the k’s for all other points is 0, the relative delay
of the test beamlet is taken as deviation from a luminal arrival
time. The data for the different test beamlet values was fitted, and
the derivative of this fit function yields the difference between
the velocity of peak intensity and the speed of light. For more
details on this analysis, see Supplement 1. Simulations were also
done to verify that the objective introduced negligible chromatic
dispersion and thus did not introduce radial delay.

The axiparabola had a nominal focal length of 480 mm, a focal
depth of 5 mm, and an off-axis angle of 10°. It was designed to
have a quasi-constant intensity over the focal depth. Due to the
relatively short focal depth chosen for these proof-of-concept
experiments, interference effects led to an intensity profile with
two peaks along the focal depth. As shown in an earlier work [21]
and in arecent article [26], these modulations come from diffrac-
tion of the spherically aberrated phase fronts, an effect which
goes beyond the geometric optics approximation. For future
acceleration experiments, an axiparabola with a higher ratio of
focal depth to Rayleigh range will be used, helping mitigate
these effects [26]. Figure 3 shows both the Zemax OpticStudio
simulation (red) and the experimentally obtained (blue) inten-
sity of the axiparabola central spot over the focal depth. Insets
show the measured focal spot at different z values, illustrating
the development of the Bessel ring structures. The second peak
of the intensity profile is experimentally reduced relative to the
simulation due to spatial aberrations. These appear because the
end of the focal depth is generated by large aperture annuli and
is thus more susceptible to aberrations [12]. For the fully ampli-
fied, non-attenuated beam, we could expect a peak intensity of
the axiparabola focused beam of around 2.2 x 10"°W/cm®.

Experimental data was first taken without the PFC con-
trol doublet in the laser chain. The control doublet was then
introduced. By manipulating the PFC of the beam incoming
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Fig. 3. Peak intensity over the focal depth, showing both Zemax
simulated (red) and experimental data (blue). The insets show 2D
focal spot images at specified points.

Letter
a),.
— P Do ____
€ o=z EE T
N L TE
— =~ "o <
St Te~] T~
2 el
- -l
~ S o
— ~< &
~B
g 41 o 0Omm RS
— O 65 mm
g-5r 130 mm
8 o 260 mm
=6 No Doublet
g ||--ommfi
‘D -7 |= = 65 mm fit
S 130 mm fit
% -8 H|= = 260 mm fit
(&) No Doublet fit
9 N N . . . . . )
0 0.5 1 1.5 2 2.5 3 35 4 4.5
b) Z [mm]
43<10'3
0 mm No Doublet Theory - 130 mm
~—~ 3.5r|——65mm o Theory-NoPFC = = Theory - 260 mm
b 130 mm = = -Theory - 0 mm Theory - No Doublet
| 3 |——260 mm = - - Theory - 65 mm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Z [mm]

C) , X107

- 0 mm

™ 65 mm

! 1.5} 130 mm

> 260 mm

@ No Doublet

> Linear Fit

j=1
W
—p—
’
’
e
’
’

Initial dev. from c (

(=]
W
7/
7
—d

0 65 130 260

No Doublet Doublet Position [mm)]

Fig. 4. (a) Deviation of the annular sections of the axiparabola
from luminal propagation in the no doublet (green), 0 mm (blue),
65 mm (red), 130 mm (cyan), and 260 mm (magenta) cases. The
dotted line shows the fit. (b) Negative derivative of the fit functions
shown in part a, with the shaded sections showing the error bars, the
dotted lines showing the theory fits, and the black circles showing
the no-PFC theory. (c) Initial deviation from the 0 PFC velocity for
different doublet positions, with the dotted line showing the linear
fit.

on the axiparabola, the doublet changes the relative timing of
arrival of different radial segments of the laser to the axiparabola
and thus the timing of the peak intensity propagation.

The results of the scan of the relative delay between the lumi-
nal propagation and the arrival of the annular sections of the
axiparabola are shown in Fig. 4(a). The results are shown for
data taken at focal positions z = 0.8,1.6,2.7,4.0 mm, which
correspond to the focusing points of the axiparabola annular
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sections at radial values r = 10.3, 14.5, 18.6,22.8 mm, respec-
tively. These are the radial values of the test beamlets selected
by the beamlet selector mask. Data is shown for the case where
no PFC control doublet is in the laser chain (green), as well as
when the doublet is at the 0 mm (blue), 65 mm (red), 130 mm
(cyan), and 260 mm (magenta) positions inside of the final beam

expander.
The deviation data was fit using a third-order polynomial fit

function:
d(z) = piz’ + p2z® + psz + pas 3

where d is the deviation, to match the integral of the velocity
equation shown in Eq. (2). Since each experimental fit had few
points and the expectation is that the dominant contribution to
the velocity change will come from the p;z term, the values of
p: and p, were taken to be the theoretical values given by the
Zemax simulated PFC shown in Fig. 1, and the fit was used
to obtain the values of p; and p,. The experimental error bars
show the error from the poor spatial resolution of the FFBCC
measurement.

From the derivative of the group velocity from ¢ was obtained
from the derivative of the fit function in Eq. (3). The results are
shown in Fig. 4(b). As expected, for the no-PFC control doublet
case (green), the PFC inherent in the refractive beam expansion
causes the largest superluminal velocity. When the doublet is
introduced at 0 mm (blue), the starting position of the velocity
is reduced. As the doublet is moved forward in the telescope
to 65 mm (red), 130 mm (cyan), and 260 mm (magenta), the
starting value of the velocity is further reduced. As the PFC
of the beam is flipped in direction, between the doublet 65
mm and 130 mm positions, the starting velocity switched from
superluminal to subluminal, as is expected from Eq. (2). The
shaded regions are the error bars for each measurement. The
dotted line of each color represents the theoretical expectation of
the velocity, obtained from Eq. (2), where the PFC values used
are extracted from the Zemax simulations. The theory agrees
quite well with the experimental data, falling well within the
error boundaries. The figure also shows the theoretical value
for no PFC (black circles), which, as expected, falls between
the doublet 65 mm and 130 mm positions, where a changes
sign.

Figure 4(c) shows the difference in the starting (z = 0) veloc-
ity of the different doublet positions from the velocity with no
PFC. The left side shows the no doublet case (green), while the
right shows a graph with the different doublet positions (same
coloring as before). The black dotted line shows the linear fit of
the experimentally measured data as a function of the doublet
position. This figure highlights the dynamic range in velocity
control afforded by the PFC manipulation.

This paper presents the first experimental realization of an
axiparabola-based scheme for tuning the axial deposition veloc-
ity. The dynamic range shown in the velocity measurements
allows for the easy transition between superluminal, luminal,
and subluminal velocities. These results confirm that the axi-
parabola behaves as expected, both in focal spot intensity over
the focal depth and in velocity. With the axiparabola character-
ized and the velocity manipulation demonstrated, this setup is
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now ready to facilitate the first high-power axiparabola-based
attempts at dephasingless laser-wakefield acceleration.

Since these results were first presented, similar results have
been obtained and published in a conference proceeding [27].
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