Article Dans Une Revue International Mathematics Research Notices Année : 2024

Gravitational Instantons, Weyl Curvature, and Conformally Kähler Geometry

Résumé

In a previous paper [7], the first two authors classified complete Ricci-flat ALF Riemannian 4-manifolds that are toric and Hermitian, but non-Kähler. In this article, we consider general Ricci-flat metrics on these spaces that are close to a given such gravitational instanton with respect to a norm that imposes reasonable fall-off conditions at infinity. We prove that any such Ricci-flat perturbation is necessarily Hermitian and carries a bounded, non-trivial Killing vector field. With mild additional hypotheses, we are then able to show that the new Ricci-flat metric must actually be one of the known gravitational instantons classified in [7].
Fichier sous embargo
Fichier sous embargo
0 8 9
Année Mois Jours
Avant la publication
mardi 21 octobre 2025
Fichier sous embargo
mardi 21 octobre 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04707548 , version 1 (09-02-2025)

Identifiants

Citer

Olivier Biquard, Paul Gauduchon, Claude Lebrun. Gravitational Instantons, Weyl Curvature, and Conformally Kähler Geometry. International Mathematics Research Notices, 2024, 2024 (20), pp.13295-13311. ⟨10.1093/imrn/rnae200⟩. ⟨hal-04707548⟩
7 Consultations
0 Téléchargements

Altmetric

Partager

More