Skip to Main content Skip to Navigation
Theses

Maxwell's equations in presence of metamaterials

Mahran Rihani 1 
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : The main subject of this thesis is the study of time-harmonic electromagnetic waves in a heterogeneous medium composed of a dielectric and a negative material (i.e. with a negative dielectric permittivity ε and/or a negative magnetic permeability μ) which are separated by an interface with a conical tip. Because of the sign-change in ε and/or μ, the Maxwell’s equations can be ill-posed in the classical L2 −frameworks. On the other hand, we know that when the two associated scalar problems, involving respectively ε and μ, are well-posed in H1, the Maxwell’s equations are well-posed. By combining the T-coercivity approach with the Mellin analysis in weighted Sobolev spaces, we present, in the first part of this work, a detailed study of these scalar problems. We prove that for each of them, the well-posedeness in H1 is lost iff the associated contrast belong to some critical set called the critical interval. These intervals correspond to the sets of negative contrasts for which propagating singularities, also known as black hole waves, appear at the tip. Contrary to the case of a 2D corner, for a 3D tip, several black hole waves can exist. Explicit expressions of these critical intervals are obtained for the particular case of circular conical tips. For critical contrasts, using the Mandelstam radiation principle, we construct functional frameworks in which well-posedness of the scalar problems is restored. The physically relevant framework is selected by a limiting absorption principle. In the process, we present a new numerical strategy for 2D/3D scalar problems in the non-critical case. This approach, presented in the second part of this work, contrary to existing ones, does not require additional assumptions on the mesh near the interface. The third part of the thesis concerns Maxwell’s equations with one or two critical coefficients. By using new results of vector potentials in weighted Sobolev spaces, we explain how to construct new functional frameworks for the electric and magnetic problems, directly related to the ones obtained for the two associated scalar problems. If one uses the setting that respects the limiting absorption principle for the scalar problems, then the settings provided for the electric and magnetic problems are also coherent with the limiting absorption principle. Finally, the last part is devoted to the homogenization process for time-harmonic Maxwell’s equations and associated scalar problems in a 3D domain that contains a periodic distribution of inclusions made of negative material. Using the T-coercivity approach, we obtain conditions on the contrasts such that the homogenization results is possible for both the scalar and the vector problems. Interestingly, we show that the homogenized matrices associated with the limit problems are either positive definite or negative definite.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-03670420
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, May 17, 2022 - 2:32:11 PM
Last modification on : Thursday, May 19, 2022 - 4:46:54 PM

File

106052_RIHANI_2022_archivage.p...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03670420, version 1

Citation

Mahran Rihani. Maxwell's equations in presence of metamaterials. Mathematical Physics [math-ph]. Institut Polytechnique de Paris, 2022. English. ⟨NNT : 2022IPPAE003⟩. ⟨tel-03670420⟩

Share

Metrics

Record views

19

Files downloads

4