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Chapter 1

Introduction

“Once upon a time in a faraway land, there was a dragon called Zoe and she was different...’ I started

the bedtime story while tucking my daughter into bed.

As thewords leftmy lips, I imagined howmagical it would be if thewalls of her room could come alive

with the scenes I was describing, adapting in real time to the story’s twists and turns. The colors would

change with the mood, the characters would look just as she imagines them, and the music would sync

with the emotions I wanted to evoke. More than just a simple projection, this system would understand

the story I am telling including its tone, rhythm, and emotional beats and would create an immersive

experience personalized to both our preferences, from my love for Ketchup to her love of orange. This

vision has been the core of my research: to create an automatic, real-time visual storytelling system that

seamlessly aligns with spoken narratives, bringing stories to life in a deeply personal and engaging way.

However, achieving this goal is far from simple. Computers, after all, cannot feel. Every day, video

processing systems like those behind YouTube, Netflix, and Amazon handle countless hours of content,

decoding, streaming, and encoding without truly understanding any of it. They process videos as mere

sequences of frames, oblivious to their rich narratives and emotions. Yet, just like how a well-directed

movie is more than a series of scenes, the stories we tell –whether in a movie or a bedtime story– are

more than just words. They are complex patterns with emotions, intentions, and carefully considered

details, from the choice of colors and camera angles to the pacing of dialogue and the interplay of light

and shadow. My work aims to bridge this gap between raw processing and true understanding, pushing

AI to understand and create the narration and emotional escalation that filmmakers achieve.

To do this, my research connects two critical components: long-term story-level movie understand-

ing and dynamic text-to-image generation. The first component involves enabling the system to grasp

the overarching narrative structure, understanding not just isolated events but how they contribute to

the story as a whole. This requires the system to leverage multiple modalities, such as text, audio, and

visual cues, to interpret the story in a way that considers the continuity and development of characters,

themes, and emotions – much like how a director uses various cinematic techniques to guide the au-

dience’s emotional journey. The second component focuses on the generation of visual content that

is contextually relevant and emotionally aligned with the story being told. This is inspired by how a

filmmaker carefully edits scenes, selects camera angles and adjusts lighting to evoke specific emotions.

By merging these two components, my objective has been to create a system that not only generates

images or sequences but also tells a coherent, engaging story that resonates on multiple levels.

This task is challenging because current systems excel primarily in low-level video understanding,

such as recognizing objects or analyzing short clips. They can identify what is happening in a scene but

often fail to grasp why it is happening or how it fits into a broader narrative. Most AI models treat videos

as linear sequences of frames, missing the intricate storytelling decisions that make films compelling.

For example, in traditional filmmaking, the placement of a camera or the timing of a cut can significantly

alter the viewer’s perception and emotional response. My research focuses on these challenges, aiming

not only at following the story but also at understanding and replicating the narrative techniques that

make storytelling such a powerful tool for communication.
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Ultimately, the objective of thiswork is to push the boundaries of AI-driven content generation, creat-

ing systems that can tell stories: stories that are not only visually impressive but also emotionally engag-

ing and personally meaningful. By combining multimodal understanding with advanced text-to-video

generation techniques, we hope that storytelling is experienced not just through words but through a

rich, dynamic interplay of visuals, sounds, and emotions. In doing so, we aim to create a world where

every bedtime story can be as vivid and magical as the imagination that inspires it.

1.1 Objective

The primary objective of this work is to advance the understanding and generation of visual content

through the integration of multiple modalities. We aim to bridge the gap between traditional low-level

video processing and high-level semantic understanding, moving beyondmere frame-by-frame analysis

to comprehending and generating coherent, contextually rich visual stories. The work is twofold: first,

to enhance the understanding of human-centric interactions and scene comprehension in videos by

leveraging multimodal data; and second, to utilize this understanding to generate visually compelling

content that captures the desired style of the human, such as artistic or photorealistic.

Specifically, our first objective is to develop approaches that improve the understanding of long-

form visual data, particularly edited multimodal videos (i.e. films). We focus on understanding the un-

derlying narrative structures, the motivations and intentions of characters, and the emotional content

conveyed through cinematic techniques. By integrating differentmodalities—such as visual cues, audio,

and text—we aim to create a holistic approach to movie understanding that can recognize relationships

between characters and the story they collectively tell.

The second objective is to leverage the insights gained frommultimodalmovie understanding for the

generation of visual content. This involves creating methods that can produce images and ideally video

sequences that are not only realistic but also coherent with the intended narrative. We seek to develop

techniques that allow for conditional generation based on textual descriptions, semantic information,

and other modalities, ensuring that the generated content is contextually appropriate and emotionally

resonant. By doing so, we aim to push the boundaries of AI-driven content creation, enabling systems

to generate visual stories that are rich in narrative depth and cinematic quality.

A key aspect of this objective is the emphasis on character and scene evolution within generated

content. We aim to create systems capable of generating dynamic, evolving narratives where characters

and scenes develop in a way that is consistent with the overall story. This includes the generation of

complex camera movements and scene compositions that reflect the emotional state of characters,

thereby enhancing the audience’s engagement and emotional connection with the content.

Finally, we aim to apply these advancedmultimodal techniques to specialized domains such asmed-

ical imaging, where the integration of multiple data types can lead to significant improvements in di-

agnostic accuracy and treatment planning. By extending our work into the medical field, we seek to

demonstrate the broad applicability and impact of multimodal content generation, from entertainment

and storytelling to critical applications in healthcare.

1.2 Motivation

There are several applications of our work, especially in our society.

Multimodal video understanding. The potential applications of video understanding and visual con-

tent generation are numerous and diverse, and continued research in these fields could lead to a wide

range of exciting new capabilities and possibilities. Below, we include some societal impacts for both

video understanding and generation, as improving one helps improve the other. Note that in most

cases, the research impact rely on multimodal data, i.e., audiovisual and textual signals.
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The primary application of the research on video understanding presented in Chapter 2 is to improve

accessibility for individuals with disabilities. Improving the ability to understand videos could lead to

the creation of tools and algorithms that can automatically generate captions, audio descriptions, or

other accessibility video features and more generally to the creation of content specifically tailored to

the needs of individuals. This could make a wide range of content more accessible to individuals who

are deaf or hard of hearing (by automatically generating captions), blind or low vision (by automatically

generating audiovisual content), or have other disabilities or cognitive impairments (by abstracting or

simplifying visual concepts). For instance, videos generated from audio descriptions or captions could

be accessed by individuals who are blind or have low vision [178, 179]; also, if simplified or abstracted,

they can become more accessible to individuals with cognitive impairments.

In addition, accurate and reliable visual content analysis could beused in entertainment applications.

For instance, the work presented in Chapter 2 could be used to automatically generate storylines in

videos [26, 86] or to predict the evolving nature of characters in movies [194, 195, 86]. This could make

visual content more user-friendly for a wide range of audiences.

Multimodal visual content generation. In parallel, the work of this thesis on generation (Chapter 3)

could be used to create videos from written news reports, stories, or other text-based content [181, 73],

given that it often relies on other modalities, such as text, semantic masks or other data sources [72].

For example, a generation method could take a written description of an event or a scene[178, 51] and

generate the corresponding visual content [326, 72].

Another societal application is to create personalized visual experiences [73, 180]. Video analysis and

generation could lead to content tailored for individual users based on their interests, preferences, or

other characteristics. For instance, a generation method could analyse a user’s browsing history, social

media activity, or other data to create a video that is personalized to their interests [326]. This could be

used to create personalized news reports, entertainment experiences or educational content.

Multimodal Medical imaging. The use of computer vision in medical imaging can have a significant

positive impact on society. Accurate and reliable video analysis is a valuable source in medical imaging,

for automatically analyzing medical images or videos [204, 205] to identify abnormalities or to automati-

cally generate reports from visual data that can assist medical professionals. Specifically, the technology

developed in this thesis could potentially contribute to benefiting individuals and communities around

the world in: (a) Improved diagnosis and treatment of diseases: By using computer vision techniques to

analyze medical images, doctors and other healthcare providers could potentially identify diseases and

othermedical conditionsmore accurately and quickly [205]. This could lead to earlier andmore effective

treatment of diseases, which could improve patient outcomes and save lives; (b) Improved patient ex-

perience with more personalized and tailored care by using interpretable techniques [99], thus leading

to a better experience for patients; and (c) Improving raremedical issues: Modern AI techniques require

big data, which is unrealistic when it comes to medical imaging due to patients privacy and rarity of dis-

eases. For this, the techniques she developed require no or few data for prediction and instead exploit

the underlying structure of medical imaging for compact and informative representations [204, 205].

Economic impact. The research work of this thesis is a step towards marketing complex AI systems.

The use cases of our work are numerous, including improving content-based recommendation video

systems and helping videographers or impaired people. Moreover, her findings can help convert videos

to audio or textbooks for disabled people (impaired vision or hearing) or can help develop language

learning techniques by watching movies in other languages. Furthermore, by improving the automatic

understanding and generation of systems, both the need for annotated data and consequently, the

deployment cost of deep learning technologies reduce. This crucial step towards marketing may have

important economic consequences in terms of job creation (design, production, retail, repair) and in-

vestments (further development, targeted conception startups).
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Environmental impact. All work presented here requires trainingmodels in GPUs. In addition to local

equipment (mostly at Polytechnique), we have relied on the French Jean Zay GPU cluster. France relies

on nuclear energy, having greener energy than average, with 50-80g CO2 for each kWh produced. We

tried to optimise experiments and use more than 80% of the GPUs power.

1.3 Challenges

The goals of this thesis are accompanied by several challenges, coming from both the complexity of

multimodal data and the demanding nature of visual content generation.

Balancing modalities. One of the primary challenges is the integration of multiple modalities in a

way that enhances understanding without overwhelming the system. Different modalities, such as vi-

sual, textual, and auditory data, carry different types of information and often operate at different levels

of abstraction. Balancing these modalities to create a cohesive understanding of a scene, while ensur-

ing that no single modality dominates or distorts the final interpretation, is a complex and ongoing

challenge.

Long-termmovie understanding. Achieving high-level reasoning and long-term video understanding

is an open challenge in videos. Up to the recent evolution of Vision LanguageModels [305], most systems

used to excel at short-term, low-level tasks, such as action recognition or object detection, but struggled

with understanding the broader narrative context within which these actions occur. Edited videos, with

their deliberate cuts, transitions, and scene compositions, require an understanding that goes beyond

recognizing what is happening in a single frame or shot. The challenge is to develop methods that

can interpret these high-level cinematic techniques and understand the motivations, intentions, and

emotional arcs that drive the story.

Controllable and user-friendly conditional generation. Ensuring that the generation covers fine

appearance details and backgrounds following the input condition while at the same time being con-

trollable and user-friendly remains a critical challenge.

Handlingnoisy conditions for content generation. Generativemodels and especially diffusionmod-

els typically struggle when the conditional information is noisy or unreliable [160, 361], often leading to

suboptimal image generation. The difficulty lies in ensuring that themodel can still generate high-quality

visual content without discarding valuable, albeit noisy, data points.

Camera-character relation for visual content generation. Generating camera trajectories that are

both realistic and artistically coherent with the narrative and character actions is highly complex. It re-

quires themodel to understand the input edited video (e.g. movie) and synchronizemultiple modalities,

including text, motion, and spatial dynamics. Also, generalizing these capabilities to broader contexts

(e.g. bedtime story) and varied storytelling styles (e.g. different directors) remains an open question.

Missing modalities or missing data. In domains like medical imaging, additional challenges arise

due to the need for high accuracy and the limited availability of annotated data. In such contexts, the

main challenge is to develop multimodal systems that can handle incomplete or noisy data while still

providing reliable and clinically relevant results.
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1.4 Contributions and Outline

This thesis addresses the above challenges, and here we outline our main contributions.

I. Multimodal video understanding (Chapter 2). Chapter 2 focuses on fundamental aspects of mul-

timodal recognition, which play a crucial role in understanding human-centric interactions and scene

comprehension. The goal is to leveragemultiple modalities to enhance the understanding and interpre-

tation of complex visual data, split in two directions: (1) Human-centric video understanding (Section 2.1).

We first workmultimodal human clustering in videos (BMVC 2020 [137] and ICCV-W 2021 [26]) and then,
we work on multimodal human interactions (CVPR 2019 [194] and TPAMI 2021 [195]). (2) Scene under-
standing (Section 2.2). Building upon the previous subsection, in Section 2.2, we discuss scene under-

standing, where the focus lies on comprehending the overall context and content of a scene. Specifically,

we first focus on the cinematic perspective by learning funny moments in videos (Oral, best honorable
paper award ACCV 2022 [178], and IJCV 2024 [179]). Then, we present our work on visual question

answering in videos (currently under submission).

II. Multimodal visual content generation (Chapter 3). The goal in Chapter 3 is to leverage multiple

modalities to enhance the generation of complex visual scenes, split in two directions: (1) Conditional

image generation (Section 3.1). We present our work on multimodal conditional image generation, ei-

ther using semantic informationwith GANs orwith emphasis on text-to-image generationwith diffusion.

First, we present our work on semantically conditioned image generation (ECCV 2022 [73]). Second, we
present our Coherence-Aware Diffusion (CAD) work, a novel method that integrates coherence in condi-

tional information into diffusionmodels, allowing them to learn fromnoisy annotations without discard-

ing data (CVPR 2024 [72]). Third, we present a comprehensive analysis and insights into Classifier-Free

Guidance (CFG) weight schedulers, the default way for image generation (TMLR 2024 [326]). (2) Mul-

timodal motion generation (Section 3.2). We present our work on the Exceptional Trajectories (E.T.)

dataset for generating complex camera motion trajectories from textual captions that describe the re-

lation and synchronisation between the camera and characters (ECCV 2024 [50]).

III. Multimodal medical applications (Chapter 4). Multimodality has gained attention in the medical

domain, by integrating imaging or video modalities with biomedical signals or health records. Yet, two

challenges remain: balancing the contribution of modalities, especially in cases with a limited amount

of data available, and tackling missing modalities. Here, we address these challenges in two directions.

(1) Renal transplant failure prediction (Section 4.1). We first introduce the masked-transformer based

CosEmb [204, 205] for forecasting transplant rejections from MRI post-transplantation exams (MICCAI
2022 [204], MIDL 2022 [205]). Furthermore, inspired by the success of LLMs, in [206] we introduced

the MEDIMP model that learns meaningful multi-modal representations of renal transplants by also

incorporating structural clinicobiological data after translating them into text prompts. Note, that this

has been one of the first works on medical imaging that exploited and explored text prompting (MIDL
2023 [206]). (2) Multimodal learning for detecting physiological changes under missing modalities (Sec-

tion 4.2). In this work, we introduce the multimodal ADAPT with two components: aligning all modalities

in the space of the strongest, richest modality to learn a joint embedding, and a Masked Multimodal

Transformer that handles missing modalities. We experiment on detecting stress physiological changes

in individuals and outperform the state of the art (MIDL 2024 [208] and CVPR-W 2024 [209]).

The work presented here is separated from the work I did during my PhD, which included only spa-

tiotemporal action recognition in videos and finished in 2017. It has been produced by the brilliant

students I co-supervise(d): Robin Courant, Nicolas Dufour, Julie Mordacq, Léo Milecki, Andrew Brown,

and Ridouane Ghermi andmy amazing collaborators: postdocs X. Wang, and Z.S Liu and researchers M.

Marin-Jimenez, D. Picard, M. Christie, M. Vakalopoulou, S. Oudot, I. Laptev, and A. Zisserman.
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Other works. Although this material represents a large part of my work during the past 6 years, there

is a number of articles that I have published that will not be mentioned below, either due to the lack

of space or due to the difference in content. The articles, written after I started my position at École

Polytechnique (2020) and not discussed in this document, include:

1. Your diffusion model is an implicit synthetic image detector. Xi Wang, Vicky Kalogeiton. In ECCV-W
2024

2. Bridging Text and Image for Artist Style Transfer via Contrastive Learning. Zhi-Song Liu, Li-WenWang,

Jun Xiao, Vicky Kalogeiton. In ECCV-W 2024

3. Conditional Gradient-based Textual Inversion. Xi Wang, Vicky Kalogeiton. In ECCV-W 2024

4. Collaborating Foundation models for Domain Generalized Semantic Segmentation. Yasser Benig-

mim, Subhankar Roy, Slim Essid, Vicky Kalogeiton, Stéphane Lathuilière. In CVPR 2024 [Project page],

[arXiv:2312.09788]
5. LEAD: Latent Realignment for Human Motion Diffusion. Nefeli Andreou, Xi Wang, Victoria Fernández

Abrevaya, Marie-Paule Cani, Vicky Kalogeiton. In CVPR-W 2024

6. Learning the What and How of Annotation in Video Object Segmentation. Thanos Delatolas, Vicky

Kalogeiton, Dim P. Papadopoulos. InWACV 2024 [Project Page] [arXiv:2311.04414v2]
7. BluNF: Blueprint Neural Field. Robin Courant, Xi Wang, Marc Christie, Vicky Kalogeiton. In ICCV-W
2023 [Project page]

8. EVA-VOS: Efficient Video Annotation for Video Object Segmentation. Thanos Delatolas, Vicky Kalo-

geiton, Dim P. Papadopoulos. In ICCV-W 2023 [Project page]

9. Name Your Style: Text-Guided Artistic Style Transfer. Zhi-Song Liu, Li-Wen Wang, Wan-Chi Siu, Vicky

Kalogeiton. In CVPR-W 2023

10. One-shot Unsupervised Domain Adaptation with Personalized Diffusion Models. Yasser Benigmim,

Subhankar Roy, Slim Essid, Vicky Kalogeiton, Stéphane Lathuilière. In CVPR-W 2023 [Project page]

11. Reward Function Design for Crowd Simulation via Reinforcement Learning. Ariel Kwiatkowski, Vicky

Kalogeiton, Julien Pettré, and Marie-Paule Cani. InMIG 2023

12. Transformers and Visual Transformers. Robin Courant, Maika Edberg, Nicolas Dufour, Vicky Kalo-

geiton. Book Chapter In Machine Learning for Brain Disorders (editor: O. Colliot), Springer, 2023
13. Understanding reinforcement learned crowds. Ariel Kwiatkowski, Vicky Kalogeiton, Julien Pettré, and

Marie-Paule Cani. InMIG 2022

14. A Survey on Reinforcement Learning Methods in Character Animation. Ariel Kwiatkowski, Eduardo

Alvarado, Vicky Kalogeiton, C Karen Liu, Julien Pettré, Michiel van de Panne, Marie-Paule Cani. In

Eurographics STAR 2022

15. UGaitNet: Multimodal gait recognition with missing input modalities Manuel J. Marin-Jimenez, Fran-

cisco M. Castro Payán, Vicky Kalogeiton, Nicolas Guil. In TIFS 2021
16. High-Level Features for Movie Style Understanding Robin Courant, Christophe Lino, Marc Christie,

Vicky Kalogeiton. In ICCV-W 2021 (best paper award)
17. Multiple Style Transfer Via Variational Autoencoder. Zhi-Song Liu, Vicky Kalogeiton, Marie-Paule Cani.

In ICIP 2021. [Project page]
18. Multimodal Gait Recognition Under Missing Modalities. Ruben Delgado-Escano, Francisco Castro,

Nicolas Guil, Vicky Kalogeiton, Manuel Marin-Jimenez. In ICIP 2021 [Project page]
19. Real-Time Active SLAM and Obstacle Avoidance for an Autonomous Robot Based on Stereo Vision.

Vicky Kalogeiton, Kostas Ioannidis, Georgios Ch. Sirakoulis, Elias B. Kosmatopoulos. Cybernetics and
Systems 2019 [while at Oxford]

20. Smoothing the Path Towards Retrieval. Andrew Brown, Weidi Xie, Vicky Kalogeiton, Andrew Zisser-

man. In ECCV 2020 [Project page] [while at Oxford]

[https://arxiv.org/pdf/2312.09788.pdf
https://github.com/yasserben/CLOUDS
https://arxiv.org/pdf/2311.04414.pdf
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Chapter 2

Multimodal Video Understanding

This Chapter focuses on fundamental aspects of multimodal recognition, which play a crucial role in

understanding human-centric interactions and scene comprehension. The goal is to leverage multiple

modalities to enhance the understanding and interpretation of complex visual data.

Human-centric video understanding (Section 2.1). In Section 2.1.1 we present our work on person-

clustering in videos, i.e. grouping characters according to their identity [137, 26]. Previous methods

focusedon thenarrower task of face-clustering, and ignored cues such as the person’s voice, their overall

appearance, and the editing structure of videos. Instead, we introduce methods for automatic video

face and person-clustering [26] using multiple modalities (face, body, and voice). We also propose two

large-scale datasets, Friends for face clustering and VPCD for person clustering in videos. The code and

annotations are available online. This work has been published at BMVC 2020, ICCV-W 2021 [137, 26].

Capturing ‘mutual gaze’ is essential for understanding social interactions. To this end, Section 2.1.2

presents our LAEO-Net++ work for detecting people Looking At Each Other (LAEO) in videos by reasoning
about the whole track. Moreover, we introduce two new LAEO datasets: UCOLAEO and AVA-LAEO. Our

experiments demonstrate the capabilities of LAEO-Net++ which sets the new state of the art. We also

apply LAEO-Net++ to a social network, wherewe automatically infer the social relationship betweenpairs

of people based on the frequency and duration that they LAEO, and show that LAEO can be a useful tool

for guided search of human interactions in videos. The code and datasets are available online. This

work has been published in CVPR 2019, TPAMI 2021 [194, 195].

Scene understanding (Section 2.2). Automatically understanding funny moments is challenging, as

they relate to various features, such as body language, dialogues and culture. In Section 2.2.1, we pro-

pose FunnyNet-W, a multimodal transformer-based model that predicts funny moments in videos. Un-

likemostmethods that rely on ground truth data in the form of subtitles, in this work, we exploit modali-

ties that come naturally with videos: (a) frames as they contain visual information, (b) audio as it contains

higher-level cues associatedwith funnymoments, such as intonation, pitch and pauses and (c) text auto-

matically extracted with a speech-to-text model as it can provide rich information when processed by a

Large Language Model. Extensive analysis show that FunnyNet-W successfully exploits visual, auditory

and textual cues, while setting the new state of the art. Our code, models, and dataset are available

online. This work has been published in ACCV 2022, IJCV 2024 [178, 179].

Existingmultimodal video understanding datasets and tasks have notable limitations. Most datasets

contain only short videos with limited events and narrow narratives, such as datasets with instructional

and egocentric videos. Although movie datasets offer richer content, they are often limited to short-

term tasks, lack publicly available videos and often present data leakage (i.e. LLMs have prior knowledge

about them). To address these, in Section 2.2.2, we propose the Short Film Dataset (SFD) with over

1k publicly available amateur movies, a wide variety of genres and minimal data leakage issues. SFD

offers long-term story-oriented video tasks with multiple-choice and open-ended question answering.

Our dataset and code are publicly available. This work is currently under submission.

https://www.robots.ox.ac.uk/~vgg/data/Video_Person_Clustering/
https://www.robots.ox.ac.uk/~vgg/research/laeonet/
https://www.lix.polytechnique.fr/vista/projects/2024_ijcv_liu/
https://shortfilmdataset.github.io/
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2.1 Human-centric video understanding

In this section, we address the problem of human-centric understanding in videos usingmultiplemodal-

ities split into two directions: person-clustering (Section 2.1.1), and detecting people Looking At Each

Other (LAEO) in videos (Section 2.1.2).

2.1.1 Human clustering

Clustering people by identity in videos has numerous real-world applications, such as person-specific

browsing, video organization, automatic cast listing, and story understanding, all without explicit iden-

tity labeling [48, 78, 303, 333, 135, 137, 302]. Effective person-clustering can greatly reduce annotation

costs. Most methods rely solely on faces, which has two drawbacks: (i) they overlook cues like voice,

appearance, and editing structure, and (ii) they limit utility for story understanding, where knowledge of

all characters is needed, not just those with visible faces. For example, voice can clarify poor-resolution

faces, and hair or clothing can link a person seen from behind to one speaking in another shot.

To this end, in this work our goal is to cluster person-tracks showing the entire body by identity in

movies and TV shows to support story understanding, using all available cues (face, voice, body appear-

ance, editing structure), including tracks without visible faces. Modalities from the same person are

both redundant and complementary, helping solve two clustering challenges: achieving pure clusters

(tracks from a single person) and merging clusters without contamination. Agreement across multiple

modalities can ensure purity, while a common modality, like voice, can merge otherwise unmergeable

clusters. Methods that rely on a single modality for merging inevitably sacrifice purity.

Related work. I. Video face clustering has been a research focus for years [303, 48, 78, 333]. Early

methods used handcrafted features and video continuity. For example, [48] applied metric learning

with automatically generated face pairs, and[333, 332] used Hidden Markov Random Fields for clus-

tering face tracklets. WBSLRR [338] incorporated prior knowledge in a block-sparse low rank repre-

sentation. Later methods relied on CNN-based face features [275, 278, 302, 303]. For instance, TSiam

and SSiam [276, 277] mined pairs by sorting distances. FINCH [266] used hierarchical clustering via

first-neighbor relations, while CCL [278] used pseudo-labels from pure tracks. Most methods required

domain-specific training and used hierarchical agglomerative clustering (HAC). Ourmethod, by contrast,

requires no training, as it integrates must-link and cannot-link constraints directly in the clustering.

II. Related Datasets. Existing face-clustering datasets [76, 259, 137, 226, 85, 49] share common limitations:

(a) small size, usually a movie or a few TV episodes; (b) under-representation of many demographics;

and (c) only face annotations, making them unsuitable for multimodality. Story understanding [117, 11]

and person-search [116] datasets with body or face annotations exist but lack audio [116, 117] or have only

partial annotations [117, 11]. None include labeled voice utterances. Our dataset, by contrast, includes

six TV shows and movies with diverse characters and multi-modal annotations for all characters.

Approach overview. We introduce two new methods for clustering in videos: video face clustering

which uses a single modality and video person-clustering, which builds on top of the face one by using

multiple modalities – face, voice, and body appearance.

For face clustering, we propose C1C (Figure 2.1): a hierarchical agglomeration clustering (HAC) ap-

proach [266] that imposes must link and cannot link constraints [48, 333] acquired in a self-supervised

manner: instances from the same trackmust be linked as they represent the same character, while con-

current tracks cannot be linked, as they represent different characters. Unlike standard HAC methods

where each partition Γmerges only one instance with existing clusters, it groups several instances using

first Nearest Neighbor (NN) relations at the same partition. In the first partition, it links samples through

first NN relations, while all following partitions link the clusters from the previous step.
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Figure 2.1: C1C: Constrained video face clustering. (Left)

Must-link constraint: instances from the same track must be

linked as they represent the same character. Cannot-link con-

straint: concurrent tracks appearing in the same frame cannot

be linked, as they represent different characters. (Right) C1C

Clustering given first NN relations and constraints.

Figure 2.2: MuHPC video-face clustering. Stage
1 clusters of the same character; the face modal-

ity cannot merge them as they depict frontal

faces (below) and profiles (top). Voice in Stage

2 merges them; Stage 3 merges face-less bodies.
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(a) Friends 
Face clustering

(b) About Last night (c) TBBT (d) Friends
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Figure 2.3: Proposed video face and person clustering datasets. (a) Examples from the Friends dataset, cap-

tured in several scenes and viewpoints, including back of heads. (b-d) VPD dataset examples. VPD contains face,

body and voice tracks annotated for many characters. A diverse set of characters are captured in a variety of

scenes, showing backs of bodies, and over-the-shoulder shots (magenta, cyan). When speaking, we also include

a voice-track (blue signal below body-tracks).

For person clusteringwe propose theMuHPC (Figure 2.2), a three-stage approach by exploiting three
modalities; but, our approach can scale to any number ofmodalities. Stage 1 creates high-precision clus-

ters using a single modality, here face. We group person-tracks that share a first nearest neighbour(NN)

using multiple iterations of HAC, as described previously [266, 137, 126]. We follow this trend subject to

two additional constraints: a cannot-link constraint for concurrent tracks (as in [137] based on [16, 48]),

and a threshold on the maximum NN distance. Stage 2 exploits multimodality to bridge clusters that
were otherwise unmergeable by the single face modality with a conservative threshold; in particular,

by requiring that different modalities (i.e. face and voice) concur on the merge. Stage 3 clusters tracks

without visible faces, which are therefore not yet clustered by the first two stages. Constraints from the

editing structure (neighboring shots) and a threshold on body features (so that they depict the same

person with the same clothing) are used to link face-less person-tracks to clusters with faces.

Proposed Datasets. The near-perfect performances [278, 302] of DL methods for video face cluster-

ing seemed, at first glance, to have solved the problem. However, when this work was proposed, the

set of datasets was limited; for example, they only considered the principal characters and ignored

the secondary or background characters [259, 76, 229]; this was hiding some of the shortcomings of

existing clustering methods [277, 369, 276, 278]. To address these, we introduced a new video face clus-

tering dataset with approximately 18k annotated heads for 49 characters (Figure 2.3(left)). Compared to

previous datasets at that time, ours was larger, contained many secondary characters, and was more

challenging as it also contained back-of-the-head detections.
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To evaluate the multi-modal person-clustering task, we require a dataset with person-level annota-

tions. However, there were very few such datasets due to the previous emphasis on face-clustering and

moreover, most face-clustering and labelling datasets, such as Buffy [76], TBBT [259] and Ours [137],

were based on TV material with limited diversity in skin color. For these reasons, we also introduced a

new video person clustering dataset, as shown in Figure 2.3 (right), where we: (i) re-purposed multiple

existing face datasets by adding person-level multi-modal annotations (e.g. all person-tracks and voice

utterances); and (ii) included different TV shows and films to address this lack of diversity. Our dataset

consists of visually disparate videos, and includes body-tracks, face-tracks when visible; and voice utter-

ances when speaking, for all annotated characters. More details in [26].

Experiments. Metrics. Wemeasure eachmetric at the episode level and then average the results over

all episodes. We use Weighted Cluster Purity (WCP) that weights the purity of a cluster by the number of

tracks belonging to it and and Normalized Mutual Information (NMI) [193] that measures the trade-off

between clustering quality and number of resulting clusters.

Quantitative results. Face clustering. We compare the state of the art at that time, i.e. FINCH [266]

and BCL [302] to our proposed C1C [137], tailored to faces, and MuHPC [26], both for face only setting,

i.e. comparable to the other methods, and multimodal setting. Our MuHPC significantly outperforms

the state of the art in all metrics, as it avoids incorrect merges, hence maintaining cluster purity. For

instance, both NMI and WCP increase by over +10% averaged across all datasets. Person clustering. We

compare against two strong baselines, one inspired by person Re-ID [375, 376, 164] that uses C1C to

cluster body rather than face features, and one that uses C1C to cluster people. For all metrics, our full

method significantly outperforms the strongest baseline by on average 6.1% in WCP and 11.8% in NMI.

This validates that using all available video cues, such as multiple modalities and the editing structure

of videos aids video person-clustering substantially.

Discussion. We proposed two novel methods for face clustering and multi-modal person-clustering

in videos. For evaluation, we introduced two datasets, one for face and one for person clustering, the

largest andmost diverse datasets of their kind at that time. We showed that using all available video cues

is essential for person clustering, leading to significant improvements in person clustering and state-of-

the-art performances for face clustering. Preliminary experiments in [26] show that person clustering

can help identify concurrencies of characters and their potential interactions. We hope this can support

downstream story understanding tasks such as learning interactions and relationships [151].

Impact. The work described here could enhance video analysis capabilities in various fields, such as

security, entertainment, and socialmedia. Improved person clustering can lead tomore efficient surveil-

lance systems, enabling quicker identification and tracking of individuals in crowdedor complex environ-

ments, thus improving public safety. In entertainment, it could revolutionize content personalization by

accurately identifying characters across scenes, enhancing viewer experiences. However, it also raises

privacy concerns, as the ability to cluster and track individuals in video footage may be misused for

unauthorized profiling, highlighting the need for ethical considerations in its application.

2.1.2 Human interactions

Eye contact or ‘mutual gaze’ is an important part of the non-verbal communication between two peo-

ple [182]. The duration and frequency of eye contact depend on the nature of the relationship and reflect

the power relationships, the attraction, or the antagonism between the participants [1]. Therefore, to

understand and interpret the social interactions that are occurring, it is important to capture this signal

accurately. The importance of detecting people Looking At Each Other (LAEO) has already been recog-

nized in a series of computer vision approaches [197, 227] as well as in other papers that study human

gaze [44, 246, 248, 25]. LAEO is complementary to other forms of human non-verbal communication



Chapter 2. Multimodal Video Understanding 11

LAEO failure

FP

MD

MDHe
ad

-m
ap

 b
ra

nc
h

3D conv

Input video

3D conv
right T-length head track

M-length heads-map
concat fc

LAEO

Not-LAEO

track score

left T-length head track

He
ad

-p
os

e 
br

an
ch

3D conv

Figure 2.4: (left) LAEO-Net++ and (right) Results: (left) LAEO-Net++ consists of the head branches (green), the

head-map branch (red) and a classification block, which scores the track sequence as LAEO or not-LAEO. (right)

Results on UCOLAEO (first) and AVA-LAEO (second) TVHID (third row). (left column) correct LAEO results when the

ground truth is LAEO. LAEO-Net++ successfully detects people LAEO in several situations (illuminations, scales,

clutter). (right column) Failure cases for false positive LAEO detections (first example) and missed detections

(two last examples). Most failures are missing people LAEO in ambiguous scenes; e.g. in the last red frame the

characters are LAEO, even though the character on the left has closed eyes.

such as facial expressions, gestures, proxemics (distance), body language and pose, paralanguage (the

tone of the voice, prosody), and interactions (e.g. hugging, handshake). Many of these have been the

subject of papers, recent at the time of this work [196, 317, 97, 151].

Here, we introduce LAEO-Net++ [195] (and the first version LAEO-Net [194]), a new network for de-

termining LAEO in videos. Unlike previous works at that time that only considered single frames, our

approach answers whether two characters are LAEO over time by using a spatio-temporal model. The

problem with frame-wise LAEO is that when characters blink or momentarily move their head, they are

incorrectly considered non-LAEO. Our model considers head tracks over multiple frames and deter-

mines if two characters are LAEO for a time period based on the head pose and their relative position.

Related work. Gaze [246] and head pose [70] help determine the visual focus of attention (VFoA). A

special VFoA case ismutual gaze or looking at each other (LAEO), where two subjects’ VFoA are each other,
often preceding or following physical interactions like a handshake. In Behaviour Imaging, detecting LAEO
is key for understanding social interactions, as in autism [249]. [4] shows children with autism have

increased eye contact with parents. [91, 182] note that willingness to LAEO demonstrates social interest.

The problemof detecting LAEO in videoswas first introduced in [197], which used humanhead detec-

tion and tracking, modeling yaw and pitch angles with Gaussian Process regression. A LAEO score was

calculated based on estimated angles and the relative head positions per frame and aggregated over a

shot. Our LAEONet++ differs by estimating LAEO over a temporal window rather than a single frame.

[253] detected conversational groups in social scenes by combining body orientation, head pose, and

relative position, while [227] tackled the problem with two calibrated cameras in a two-person scenario.

Recent integration of LAEO with 3D gaze estimation [68] has enhanced representation and highlighted

the importance of 3D gaze in understanding relations, bridging 2D and 3D mutual gaze detection.

Looking at a person is a dominant category in human interactions in videos [231, 97]. [175] capture

temporal cues, [185] classify relationships, and [151] jointly learn interactions and relations. Here, we

use mutual gaze to identify interactions and determine friendship levels. A LAEO model can impact

applications like detecting cartoons, animals (e.g., cats, chimpanzees [268]), or other objects (e.g., cars)

looking at each other.



Chapter 2. Multimodal Video Understanding 12

Approach overview. Given a video clip, we aim to determine if any two humans are Looking At Each
Other (LAEO). To this end, we introduce three-branch LAEO-Net++ (Figure 2.4(left)). It takes as input two
head tracks that determine the head poses and a head-map representing the relative position and scale

between the two heads. Specifically, we depict as 2D Gaussians all the heads detected at each frame of

the  -frames track. The different Gaussian sizes encode the relative 3D arrangement (depth) of people

in the scene, i.e. smaller sizes indicate that people are further from the camera compared to those with

bigger size. This branch also encodes information for other people in the scene. Depending on its size

and scale, a third person could cut the gaze ray between the two side people. Including this informa-

tion helps LAEO-Net++ to distinguish such cases (red ‘Chandler’ Gaussian in Figure 2.4 bottom stream).

Finally, LAEO-Net++ determines a confidence score for LAEO (a Softmax layer with Cross-Entropy) by

also identifying the frames where it occurs. The network uses spatio-temporal 3D convolutions and is

applied exhaustively over all pairs of simultaneous head tracks in the video.

Proposed Datasets. In addition to the existing TVHID [231], i.e. the only video dataset with LAEO an-

notations, we propose two new datasets: UCOLAEO and AVA-LAEO1. UCOLAEO consists of 129 (3-12
seconds long) shots from four popular TV shows, with heads bounding box annotations in each frame

and an additional label for every pair of heads in a frame as LAEO or not-LAEO. AVA-LAEO consists of

movies from the training and validation sets of the AVA v.2.2 dataset [97]. We enhance the labels of the

existing person bounding-boxes with LAEO annotations, resulting in ∼ 19k LAEO and ∼ 118k not-LAEO
pairs for the training set and ∼ 5.8k LAEO and ∼ 28k not-LAEO pairs for the val set.

Experiments. Metrics. We use LAEO-classification Average Precision (AP).

Quantitative Results. We evaluate LAEO-Net++ on UCOLAEO, AVA-LAEO and TVHID and compare it

against the state of the art at that time. When training and testing on UCOLAEO, and AVA-LAEO, the per-

formance is 86.7% and 68.7%, respectively, revealing the significant performance gap between the two

datasets, due to the different nature of AVA-LAEO: (1) no head annotations (just human bounding boxes);

(2) it contains challenging visual concepts, such as low-resolution movies, crowded scenes, blurry, small

heads, and particular clothing styles, e.g. people wearing turbans. Yet, LAEO-Net++ achieves AP=68.7%.
LAEO-Net++ tested on TVHID achieves AP= 92.3% when training on UCOLAEO, outperforming train-

ing on AVA-LAEO that achieves AP=87.4%. This is because the domain of TVHID is closer to the one of

UCOLAEO than to AVA-LAEO, given that UCOLAEO and TVHID consist of TV shows, whereas AVA-LAEO

contains movies. Finally, the model trained on UCOLAEO outperforms all methods by 1 − 3%, reaching
92.3% vs 89.0% for Fine-head orientation [199] and 87.6%for Fully auto+HB [197].

Qualitative results. When applying LAEO-Net++ on UCO, AVA and TVHID we obtain the results of Fig-

ure 2.4 (right). Our model successfully detects people LAEO in several situations and scenarios, such

as different illuminations, scales, cluttered background. By examining the remaining 8% error, we note

that in most cases, the ground truth label is ambiguous, e.g. last frame in Figure 2.4 (right).

Social Network & Interaction prediction. One principal way of signalling interest in social interac-

tion is the willingness of people to LAEO [91, 182]. The duration and frequency of eye contact reflect the

power relationships, the attraction, or the antagonism between people [1]. We present here two appli-

cations of LAEO-Net++ in analysing social interactions in TV material.

I. Interaction-ness. At the shot level, we show that LAEO is an indicator of whether two characters

are interacting. Here, we define two characters as interacting if they are directly involved (e.g. kiss,

hug), or the actions of one influence the actions of the other (e.g. show something on a screen), or

they communicate (e.g. talk to each other), or if they perform an activity together (e.g. shopping). Two

characters are not interacting within a shot if they do not refer to each other (e.g. both characters listen

1Both datasets are available online http://www.robots.ox.ac.uk/~vgg/research/laeonet/.

http://www.robots.ox.ac.uk/~vgg/research/laeonet/
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Figure 2.5: (a) Interaction prediction with LAEO-Net++. Examples of true positives (TP) and false negatives (FN)
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predicted as not-interacting; the orange row is correctly predicted as interacting. (b) Social network using the
Average-LAEO (AL) on Friends. We depict the %AL between character pairs with the edges in the graph: the

thicker the edge, the more dominant the relationship e.g. Ross and Rachel.

to a third person talking), or they do not influence each other, or they perform different tasks (e.g. one

character is watching TV while the other is reading a book).

For every character pair, we measure the ‘average-LAEO score’ (AL) over the frames where the two

characters co-exist and the Shots-Coexistence-Ratio (SCR) (i.e the ratio between the number of frames

that two characters co-exist in a shot over the total number of frames of the shot). The examples in

Figure 2.5(a) showcase the superiority of AL compared to SCR: the green are correctly predicted as inter-

acting by AL, but wrongly predicted as not-interacting by SCR; the orange ones are missed interactions

by AL, but correctly predicted as interacting by SCR. AL is suitable for predicting the presence or absence

of interactions between characters, whereas the SCR is incapable of differentiating them (e.g. Monica

and Joey in the last green example). Moreover, AL fails to determine interactions where people are not

LAEO (e.g. Ross and Chandler or Mark and Rachel in orange). In most real-life cases, however, an inter-

action typically involves gazing; hence, AL is suitable for automatically capturing characters interacting.

II. Friend-ness. At the episode level, we show that LAEO is an indicator of the extent of social interac-

tions between two characters, we term this friend-ness. We measure LAEO at the episode level as the

average of AL over all shots in which the two characters appear and depict it in Figure 2.5(b): the thicker

the edge, the higher the score and the stronger the relations. AL captures the dominant relationships,

e.g. Ross and Rachel, against more distant one, e.g. Phoebe and Chandler. Our study reveals all promi-

nent pair relations, demonstrating that the more people are LAEO, the stronger their social relationship.

Discussion. In this work, we focused on people looking at each other (LAEO) in videos. We proposed

LAEO-Net++, which takes as input head tracks and determines if the people in the track are LAEO. This

is the first work that uses tracks instead of bounding-boxes as input to reason about people on the

whole track. We showed the generality of our model by applying it to a social case scenario, where

we automatically infer the social relationship between two people based on the frequency they LAEO

i.e. friend-ness, and showed that our metric can be useful for a guided search of interactions between

characters in videos (i.e. interaction prediction).

Impact. Detecting mutual gaze and interactions in videos could help improve social interaction anal-

ysis and relationship recognition in various contexts. In social media and entertainment, for instance, it

could enable more nuanced content recommendations and more interactive experiences by recogniz-

ing and understanding the nature of interpersonal connections. In mental health and therapy, it could

aid in assessing social behaviors and interactions, offering insights into conditions like autism. However,

this capability also raises privacy concerns, as accurate recognition of interactions and friendshipsmight

lead to invasive tracking or profiling if not managed with care.
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2.2 Scene understanding

Here, we address scene understanding in cinematic content using multiple modalities in two directions:

in Section 2.2.1, we present amethod for understanding funnymoments in movies, while in Section 2.2.2

we propose the Short Film Dataset with question-answering for story-level understanding.

2.2.1 Multimodal learning of funny moments in videos

We perceive the world through our senses, particularly in multimedia, where all signals can evoke emo-

tions and reactions. Funniness is universal, yet while humans easily recognize humor across cultures

and eras, machines struggle with it. Despite growing human-machine interactions, identifying funniness

remains a challenge, hindering spontaneity. Humor is complex, often involving visual, auditory, ormixed

cues, with no formula for the perfect joke. Recent studies exploring humor and funny moments [6, 331]

mostly rely on text, with few incorporating videos [230, 143]. Their limitation is their dependence on

external transcripts, which are unavailable in raw video data. Advances in speech-to-text now allow

accurate transcript extraction from raw audio, aiding contextual understanding. Audio is vital for de-

tecting humor, providing complementary cues like tone, pauses, and pitch [358, 29]. Visual cues, such

as facial expressions and gestures, also impact how humor is perceived. Therefore, we exploit all these

modalities and introduce FunnyNet-W, a multimodal model for predicting funny moments in videos.

Related work. I. Sarcasm and Humor share traits like irony but differ in representation. Sarcasm is

often detected through dialogue analysis using language and acoustic patterns [56, 255, 307]; humor

is usually identified by audio cues before laughter [29, 107]. Methods typically focus on text [6, 331] or

multimodal cues [107, 106]. [143] uses vision and language attention, while [29] and [107] leverage LSTMs.

II. Sound Event Detection and Laughter Detection. Sound event detection involves identifying and times-

tamping sound events, often using Mel spectrograms [201, 321, 218, 219, 263]. We focus on laughter

detection, using it as pseudo-labels to train FunnyNet-W. Laughter detection literature is limited, with

some methods using physiological sensors [15, 281] and others employing supervised learning with an-

notated datasets [261, 87]. Our unsupervised method leverages multichannel audio data.

III. Multimodal tasks: Audio+Video: Methods use face movements to separate voices [81, 3] or align audio

and video for speaker localization [272, 309]. Video+Language: Tasks include video captioning [322, 169],
question answering [167, 350, 381], text-to-video generation [283]. Audio+Language: Tasks cover speech
emotion recognition [355, 237], audio-text retrieval [183], audio captioning [147]. Video+Language+Audio:
improves over unimodal approaches for video captioning [119] or emotion recognition [58].

IV. Modality Alignment. Recent efforts [240, 101, 88] focus on shared embeddings. CLIP [240] advanced

text-image representation, with similar successes in audio-vision [210]. Attention connects multimodal

signals [88, 346], and ourmethod integrates cross-attention to capture token correlations [330, 297, 124,

154], using modality projections as bottlenecks [214] to prevent bias from a dominant modality.

Approach overview. FunnyNet-W (Figure 2.6) consists of: (i) the visual, audio, text encoders with

videos, audio and subtitles (we use an automatic speech recognition system [241]) as inputs; (ii) the

proposed Cross-Attention Fusion (CAF) module that explores cross and intra-modality correlations:

• Cross-attention models relationships among vision, audio, and text features. We stack all fea-

tures as 𝐹S∈R3×512, and then feed 𝐹S into three cross-attention modules to attend to 𝑖={𝑉 , 𝑇 , 𝐴}

for {vision, text, audio}. Next, the scaled attention per modality is computed as 𝜎
(

𝑄S𝐾𝑇
𝑖

√

𝑑

)

𝑉𝑖,

with 𝜎 the softmax. The query 𝑄 comes from the stacked features: 𝑄S=𝐹S𝑊 QS , while the key 𝐾
and value 𝑉 come from a single modality as 𝐾𝑖=𝐹𝑖𝑊 K𝑖 , and 𝑉𝑖=𝐹𝑖𝑊 V𝑖 . Next, we obtain three

cross-attentions and sum them to a unified feature 𝐹U as: FU =
∑

𝑖∈{𝑉 ,𝐹 ,𝐴} 𝜎
(

𝑄S𝐾𝑇
𝑖

√

𝑑

)

𝑉𝑖.
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Figure 2.6: Architecture of FunnyNet-W.Given audio-visual clips, FunnyNet-Wpredicts funnymoments in videos.

The outputs of the audio (blue), textual (red), and visual (green) encoders pass through the Cross Attention Fusion
(CAF), which consists of cross-attention (CA) and self-attention (SA) for feature fusion. It is trained to embed all

modalities in the same space via self-supervision (𝐿ss) and to classify clips as funny or not-funny (𝐿cls).

• Self-attention computes the intra-correlation of the 𝐹U features, which are further summed with

a residual 𝐹U as: FCAF = 𝐹U + 𝜎
(

𝑄U𝐾𝑇
U

√

𝑑

)

𝑉U, where𝑄U=𝐹U𝑊 QU , 𝐾U=𝐹𝑈𝑊 KU , 𝑉U=𝐹𝑈𝑊 VU .

Finally, we average 𝐹CAF tokens and feed it to a classification layer. Note, CAF differs to existing

methods [207, 330] in the cross attention computation. Using stacked features 𝐹S to attend to each

modality 𝑄S brings three benefits: (a) it is order-agnostic: for any modality pair we compute cross-

attention once, instead of twice by interchanging queries and keys/values; resulting in reduced compute;

(b) eachmodality serves as a query to search for tokens in other modalities; bringing rich feature fusion;

and (c) it generalizes to any number of modalities, resulting in scalability.

Training. FunnyNet-W is trained with𝐿=𝜆ss𝐿ss + 𝜆cls𝐿cls, where 𝜆ss, 𝜆cls the weighting parameters that

control the importance of each loss. The two individual losses are: First, Softmax loss 𝐿cls to predict if

the input is funny or not. Second, to capture ‘mutual’ audiovisual information, we solve a self-supervised

synchronization task [46, 149, 225]: we encourage visual features to be correlated with true audios and

uncorrelated with audios from other videos. Given the i-th pair of visual 𝑣𝑖 and true audio features

𝑎𝑖 and 𝑁 other audios from the same batch: 𝑎1, ..., 𝑎𝑁 we minimize the loss [40, 47, 220]: 𝐿cotrs =
−log exp(S(𝑣𝑖,𝑎𝑖)∕𝜏)

∑𝑁
𝑗=1 exp(S(𝑣𝑖,𝑎𝑗 )∕𝜏)

, where S the cosine similarity and 𝜏 the temperature factor. Here, we compute the

contrastive loss between all three modalities, i.e., visual-audio, text-audio, and visual-text. Thus, our

self-supervised loss is: 𝐿ss = −1
3

(

𝐿𝑣𝑖,𝑎𝑖
cotrs

+𝐿𝑣𝑖,𝑡𝑖
cotrs

+𝐿𝑡𝑖,𝑎𝑖
cotrs

)

.

Positive and negative samples. For training, we exploit the laughter that naturally exists in TV Shows:
we define as ‘funny’ for any audiovisual snippet followed by laughter; and ‘not-funny’ any audiovisual

snippet not followed by laughter. To detect funny moments, we also propose an unsupervised laughter

detector that separates voices from background audio, described in [178, 179].

Proposed Datasets. The datasets for funny moment detection are: The Big Bang Theory [143], Multi-

modal Humor Dataset [230] MUStARD [29] and UR-Funny [107]. Here, we also enrich the Friends [26, 137]

dataset by manually annotating 3.5k laughter time codes at the start and the end of all laughters.

Experiments. Metrics. To evaluate FunnyNet-W, we use classification accuracy (Acc) and F1 score (F1).

Quantitative results. We compare FunnyNet-W [179] to the state of the art at that time: MUStARD [29],

MSAM [230], MISA [108], HKT [106] and LaughM [143]. Our results show that first, FunnyNet-W outper-

forms all methods in both metrics by approximately 1-3% Acc, confirming its effectiveness, and, second,

the performance in the out-of-domain UR-Funny is significantly high (80.3% Acc vs 77.4% for HKT). These

highlight that FunnyNet-W is an effective model for funny moment detection.

Qualitative results. To visualize the impact of modalities, we compute the average attention values on

the three CA modules (CA boxes in Figure 2.6) and then, show the average weights for each modality
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Ross: they are putting together 
this panel to talk about fossils they 
just found in Peru and the 
Discovery channel is gonna film it.

Chandler: Oh my God! (pause) 
Who is gonna watch that?

Chandler: Okay! Now you stay 
out here and think about what 
you did!!

Ross: That is a duck.
Chandler (high pitch): That is a 
bad duck!!

Ross: Is that still…
Rachel: I’m fine. I’m fine. 
Ross: No. You are not.

Rachel: Yes, I am.
Ross: Rach
Rachel: Look, I’m fine. 

A: 63.5
V: 16.4

T: 20.1
A: 41

V: 23.4

T: 35.6
A: 58.6

V: 5.8

T: 35.6

new

Positive samples

FunnyNet-W: Text FunnyNet-W: Visual FunnyNet-W: Audio (a) (b) Positive samples (c)Negative sample

Figure 2.7: Examples of (a,b) funny, and (c) non-funny predictions on the Friends test set. We show the audio,

visual and text inputs, the learned average weights of cross-attentions from CAF (pie chart), and the subtitles.

in the pie chart of each example in Figure 2.7. For this, we show (a-b) two positive and one (c) negative

samples on Friendswith frames, subtitles and audio spectrogram (left) andpitch (right). The contribution

of each modality varies; the commonality though is that audio contributes more than half, followed

by text and visual features. When there is a strong audio signal, the contribution of audio increases

significantly. This is shown when the character yells (‘Chandler’ in (a)), or pauses the speech (‘Chandler’

in (b)). In contrast, in (c), the tone, volume, pitch or rhythm do not change greatly, so the text starts to

play a bigger role in determining them as non-funny scenes. Furthermore, in (c), the visual feature plays

very little role in the final prediction probably because the scenes do not capture the whole character’s

bodies and their movement, so the visual model can offer only little information.

FunnyNet-W against LLM chatbot. Here, we compare FunnyNet-W [179] against a Large Language

Model (LLM) [223, 313] chatbot to assess its performance relative to these general models. Specifically,

we evaluate the LlaMa-2 [313] chatbot on the Friends dataset with prompt training (few-shot setting: we

give some examples to the LLMs) and without prompt training (zero-shot setting: we prompt the LLM

with the question and subtitles). Our results show that with prompt training, the chatbot’s performance

increases from 53.2% to 55.9% in Acc. Overall, FunnyNet-W outperforms all examined cases with the

chatbot, reaching 85.2% in Acc. Interestingly, we note that the performance of FunnyNet-W using text

only is 68.1% in Acc, close to the one of the LlaMa-2 chatbot (55.9%), thus showcasing the impressive

representation power of LLM chatbots, who perhaps have already some knowledge of popular edited

films, such as Friends TV-show (see also the following Section 2.2.2).

Discussion. We introduced FunnyNet-W [179] and FunnyNet [178], an audiovisual model for funnymo-

ment detection. In contrast to works that relymainly on text, FunnyNet-W also exploits audio that comes

naturally with videos and contains high-level cues (pauses, tones). Our findings show audio is the dom-

inant cue for signaling funny situations, while audio and text offer complementary information. Our

results show the effectiveness of FunnyNet-W, which sets the new state of the art on five datasets. Fu-

ture work includes analyzing the contribution of audio cues (pitch, tone) and different languages.

Impact. FunnyNet-W has several applications. It can help cognitive researchers study humor at scale,

assist artists in editing films without needing a live audience, and enhance human-machine interactions

by adding humor to conversational agents. However, its deployment requires caution due to its potential

misuse, such as aiding identity fraud by mimicking a victim’s sense of humor. FunnyNet-W, trained

mainly on Western, especially U.S. materials, may struggle to generalize across cultures due to thematic

and expressive differences. Additionally, it faces language bias, as it is trained in English, limiting its

effectiveness across different languages and cultural contexts. Environmental. All experiments are done

on NVIDIA RTX4090 and A100 GPUs, with each of them requiring 215W in power supply. For this project,

we use approximately 800 GPU hours. Training a FunnyNet-W model with all three modalities requires

around 6 GPU hours on NVIDIA RTX4090, which amounts to 1.29 kWh and 300.75g of CO2 emitted.
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2.2.2 Movie Question Answering

Recent advances in vision-languagemodels [168, 162, 38, 39, 327, 318, 80, 79, 52, 344] have shownpromise

in enhancing machine perception. However, existing datasets face limitations. Most consist of short

videos [97, 2, 62, 345, 348, 94, 290, 142, 163, 96, 337], focusing on short-term tasks like action recogni-

tion and video retrieval, requiring only a few seconds of content [192, 156]. For long-form video under-

standing, three main categories exist: (i) Egocentric videos capture continuous actions and excel in video
duration but lack narrative depth [95, 54, 127, 170, 192, 282, 273]; (ii) Instructional videos[202, 347] focus
on procedural aspects but are brief and lack storytelling; (iii)Movies provide complex narratives and ex-

tended duration, making them ideal for testing long-form video comprehension [256, 11, 304, 157, 285,

103, 334, 117, 316, 342, 262, 198, 244, 35, 23, 190].

Despite their benefits, movie datasets have threemajor limitations: (i) Accessibility: they often include
copyrighted content, limiting public access; (ii) Clip duration: they consist of short, incomplete clips [304,

157, 245, 334], hindering long-form understanding and narrative focus [286]; (iii) Data Leakage: as these
datasets comprise well-known commercial movies, modern Large Language Models (LLMs) and Vision-

Language Models (VLMs) have likely been exposed to some form of movie information (i.e., synopses,

reviews, discussions, subtitles, blog posts).

To overcome these issues, we introduce the Short Film Dataset (SFD), featuring 1,078 short films

totaling over 243 hours, with an average duration of 13 minutes per film –longer than existing datasets.

SFD includes publicly accessible amateur films from YouTube, offering complex narratives and minimal

exposure to LLMs, reducing data leakage risks (see Figure 2.9).

Related work. I. VideoQA benchmarks evaluate reasoning, memory, and comprehension through var-

ious datasets covering visual descriptions [345, 37], temporal reasoning [337], compositional reason-

ing [96], social intelligence [357], instructional [347], egocentric [192, 127, 170], and movie videos [304,

157, 190]. These datasets typically use short videos and require reasoning on only a few frames [192].

II. VideoQA methods use large-scale pre-trained models through multimodal contrastive learning [79,

162, 327, 360, 359, 39, 38] or visually-conditioned large language models [160, 52]. For example, [344]

enhances LLMs with visual capabilities, [349] excels in zero-shot VideoQA using lightweight adapters,

while Video-LLaVA [168] connects a visual encoder and language model via a simple projection layer.

III. Long-form video understanding tests models on long-term reasoning [250]. Datasets like those for

egocentric videos [192] andmovies [334, 285, 103] focus on complex tasks, although some, like LVU [334],

have limited tasks. Datasets like [304] and [286] focus on movie plots and characters but lack video

data due to copyright concerns.
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Dataset Venue Annotation
Avg.

#QA Pairs Multimodal Long-Term Accessible
Unknown Full

Length (s) To LLMs Movies

General VideoQA datasets

MSRVTT-QA [343] (test) ACM 2017 Auto 15 72,820 ✗ ✗ ✓ ✓ -

MSVD-QA [37] (test) ACM 2017 Auto 10 13,156 ✗ ✗ ✓ ✓ -

TGIF-QA [125] (test) CVPR 2017 Auto 3 25,751 ✗ ✗ ✓ ✓ -

ActivityNet-QA [356] (test) AAAI 2019 Manual 180 8,000 ✗ ✗ ✓ ✓ -

How2QA [265] (test) EMNLP 2020 Manual 60 4,400 ✗ ✗ ✓ ✓ -

NeXT-QA [337] (test) CVPR 2021 Manual 44 9,178 ✗ ✗ ✓ ✓ -

iVQA [173] ICCV 2021 Manual 18 10,000 ✗ ✗ ✓ ✓ -

EgoSchema [192] NeurIPS 2023 Manual + Auto 180 5,000 ✗ ✓ ✓ ✓ -

MovieQA datasets

MovieQA [304] (test) CVPR 2016 Manual 203 6,462 ✓ ✓ ✗ ✗ ✗

TVQA [157] (test) EMNLP 2018 Manual 76 15,253 ✓ ✗ ✗ ✓ ✗

LVU [334] (test) CVPR 2021 Manual 220 1,223 ✓ ✓ ✓ ✗ ✗

MovieChat [286] (test) CVPR 2024 Manual 459 2,417 ✓ ✓ ✗ ✓ ✗

CinePile [245] (test) arXiv 2024 Manual + Auto 160 4,940 ✓ ✓ ✓ ✓ ✗

SFD (Ours) Manual + Auto 821 4,885 ✓ ✓ ✓ ✓ ✓

Table 2.1: Comparison of VideoQA and MovieQA datasets.

Proposed Dataset. Short films, typically 5-20 minutes long, are motion pictures that span various

styles (e.g., narrative fiction, documentary, animation) and genres (e.g., action, drama, comedy, horror)

and are often experimental rather than commercial [86]. The recent rise of publicly available short films

allows us to create the Short Film Dataset (SFD) to advance research in story-level video understanding.

We create SFD from the Omeleto YouTube channel2, which features high-quality, award-winning

short films. We downloaded videos, subtitles, and metadata, including titles, loglines, synopses, and

details like genre, release year, region, and language and filled in missing transcripts.

SFD supports two question-answering tasks: (a) Multiple-Choice Question answering (MCQ) [304,

245] and (b) Open-Ended Question answering (OEQ). All questions and answers, generated by LLMs

from movie descriptions, went through manual curation to ensure they accurately reflect the films’ set-

tings, characters, storylines, and themes. SFD includes 4,885 MCQs and OEQs, averaging 4.53 questions

per film. Compared to existing video andmovie question-answering datasets, SFD has the longest aver-

age video duration (821 seconds) and offers benefits in multimodality, public accessibility, data leakage

prevention, and narrative coherence.

Experiments. Data leakage. Modern LLMs, pre-trained on vast internet data, risk being exposed

during training to information about commercial films, such as synopses, reviews, scripts, and tran-

scripts. This issue may result in models recalling answers directly without analyzing the video con-

tent, leading to biased benchmarks. In this section, we quantitatively assess the extent of data leak-

age on datasets. Specifically, we prompt LLMs to answer open-ended questions using only the movie

title and compute the accuracy of responses, following [189]. We experiment with 3 movie datasets:

MovieQA [304], LVU [334] and our SFD, 5 open-sourced models: Gemma 2B [306], Mistral 7B/8x7B [129],

LLaMA-3 8B/70B [312] and 4 commercial models Claude 3 Haiku/Sonnet, and GPT-3.5/4 [221]. Figure 2.9

reports the results of the data leakage experiment and further details can be found in [86].

We observe that both MovieQA and LVU suffer from data leakage, reaching up to 71.3% and 76.0%

accuracies. In contrast, thanks to the low presence of amateur film on the internet, SFD exhibits a

maximum accuracy of 36.0%, indicating a low leakage issue. Furthermore, as expected, the extent of

data leakage correlates with the knowledge level reflected byMMLU score [77], indicating that LLMswith

more knowledge exhibit higher levels of memorization, leading to worse leakage issues. For instance,

for both MovieQA and LVU, the zero-shot accuracy increases from approximately random level (20%) to

more than 70% as the model size rises. Meanwhile, SFD maintains stable and low accuracies ranging

between 19.7% and 36.0%, regardless of LLMknowledge variation, further indicating its lowdata leakage.

2https://www.youtube.com/@Omeleto
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This experiment reveals that relying solely on existing datasets to evaluate new methods is insufficient.

Instead, our SFD offers a more objective and reliable test bed for long-term video understanding.

Quantitative results. We benchmark 7 state-of-the-art methods on SFD: FrozenBiLM [13], mPLUG-

Owl2 [351], Video-LLaVA [168], LLoVi [363], LangRepo [136], MovieChat [286] and TimeChat [252]. These

models are tested in a zero-shot video question-answering setting.

User Study. To verify the answerability of our MCQ and assess the upper limit of SFD, we conducted

three user studies: (1) (Vision-Language),—full videowith audio and subtitles; (2) (Vision-only)-muted videos;

(3) (Language-only)-plain text subtitles. For each question, all participants were asked to select the cor-

rect answer. Our results show that when provided with the full multimodal information, participants

answer questions with high accuracy (89.8%). As expected, removing modalities lowers accuracy: when

using only subtitles the performance is 70.9%, whereas the vision-only performance drops to 59.0%.

Question Answering. For MCQ, model performance is generally poor (max 55.6% for LLoVi), with LLoVi

being a notable exception in the language-only setting (64.2%). Compared to human performance, there

is a significant gap in the multi-modal setting, where human performance reaches 89.8% and the best

model reaches 55.6%. This can be explained by the vision-only setting, where the gap reaches 20.7%.

The OEQ task proves even more challenging, with lower accuracy across all models, ranging from 3.5%

to 40.3%. Subtitles-only models, particularly LLoVi, lead in performance, highlighting the dominance of

language processing in understanding and answering complex questions.

Our results and analysis suggest that (1) text (subtitles) is a stronger cue than visual frames for movie

question-answering; (2) modern multimodal methods (max Acc at 60.0%) fall behind human evaluation;

and (3) there is a large room for improvement in the visual aspect, where the gap in performance be-

tween modern methods (average Acc 38.3%) and user study (59.0% Acc) is still very high.

Discussion. We introduced the Short Film Dataset (SFD), a long-form video understanding benchmark

featuring complete and narrative-driven amateur short movies. SFD includesmultiple-choice and open-

ended question-answering tasks. Compared to other datasets, SFD stands out by offering richer, story-

oriented content with tasks specifically tailored for long-term reasoning. Unlike most movie datasets

that use copyrighted commercial films prone to data leakage with LLMs, SFD relies on amateur films,

which are publicly accessible and have a limited online presence. Furthermore, our analysis indicates

that while language-based methods achieve performance levels comparable to humans, state-of-the-

art vision-based andmultimodal methods fall behind human evaluation and they still have considerable

room for improvement, highlighting the need for further advancements. In conclusion, we believe that

our SFD paves the way for accessible, and comprehensive long-term movie understanding that is not

known a priori by LLMs, thus helping the community develop robust methods.

Impact. The proposed SFD has several implications regarding copyright, licensing, and potential so-

cial impacts. We do not distribute raw video content; instead, we provide URLs that link directly to

YouTube, ensuring that creators’ copyrights are respected in accordance with YouTube’s Terms of Ser-

vice.3 The dataset is intended solely for academic research and is licensed under CC BY-NC-SA 4.0 (Cre-

ative Commons Attribution-NonCommercial-ShareAlike 4.0 International) to protect the metadata and

associated information. However, there are potential negative social impacts. The dataset primarily

includes English-speaking films from North America and Europe, which could lead to biased video un-

derstanding models due to the under-representation of non-English-speaking cultures. Additionally,

advances in movie understanding may encourage filmmakers to tailor their work to optimize for what

is favoured by algorithms, potentially stifling creative freedom and depriving innovation.

3https://www.youtube.com/static?template=terms (Section: License to Other Users)

https://www.youtube.com/static?template=terms
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Chapter 3

Multimodal Visual Content Generation

This Chapter focuses on multimodal visual content generation, where the goal is to leverage multiple

modalities to enhance the generation of complex visual scenes.

Conditional image generation (Section 3.1). First, Section 3.1.1 presents our semantically conditioned

image generation work. Most such methods focus on the narrower task of pose transfer and ignore the

more challenging task of subject transfer which consists in not only transferring the pose but also the

appearance and background. Instead, here, we introduce the GAN-based SCAM that encodes rich and

diverse information in each semantic image region, achieving precise generation with emphasis on fine

details. SCAM successfully encodes the diversity of appearance in each semantic region and sets the

new state of the art on subject transfer. The code is available online. This work has been published at

ECCV 2022 [73].

Second, Section 3.1.2 presents our Coherence-Aware Diffusion (CAD) method that integrates coher-

ence in conditional information into diffusion models, allowing them to learn from noisy annotations

without discarding data. This is useful in scenarios where conditional information may be noisy or un-

reliable due to human annotation errors or weak alignment. We assume that each data point has an

associated coherence score that reflects the quality of the conditional information. We then condition

the diffusionmodel on both the conditional information and the coherence score. In this way, themodel

learns to ignore or discount the conditioning when the coherence is low. We show that CAD is theoreti-

cally sound and empirically effective on various conditional generation tasks. The code is available online

online. This work has been published at CVPR 2024 [72].

Third, Section 3.1.3 presents a comprehensive analysis and insights into Classifier-Free Guidance

(CFG) weight schedulers, the default way for image generation. CFG operates by combining the condi-

tional and unconditional predictions using a fixed weight. However, varying the weights throughout the

diffusion process leads to superior results. In this work, we analyze this behaviour and provide valu-

able insights into CFG weight schedulers. Our findings suggest that (a) simple, monotonically increasing

weight schedulers consistently lead to improved performances, requiring merely a single line of code

and (b) more complex parametrized schedulers can improve results, but do not generalize across mod-

els and tasks. The one-line code is published at TMLR 2024 [326].

Multimodal motion generation (Section 3.2). Stories and emotions in movies emerge through well-

thought-out directing decisions, in particular camera placement and movement. Crafting compelling

camera trajectories remains a complex iterative process. To tackle this, here, we present our proposed

dataset called the Exceptional Trajectories (E.T.) with camera trajectories along with character informa-

tion and textual captions encompassing descriptions of both camera and character. To our knowledge,

this is the first dataset of its kind. We also propose the diffusion-based Director, which generates com-

plex camera trajectories from textual captions that describe the relation and synchronisation between

the camera and characters. Our model outperforms the state of the art and our experiments reveal

its effectiveness. The code and dataset are available online. This work has been published at ECCV

2024 [50].

https://imagine.enpc.fr/~dufourn/publications/scam.html
hhttps://nicolas-dufour.github.io/cad.html
https://www.lix.polytechnique.fr/vista/projects/2024_et_courant/
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3.1 Conditional image generation

Here, we address image generation conditioned on various input modalities, i.e. semantic information

(Section 3.1.1) and class or text (Sections 3.1.2-3.1.3).

3.1.1 Semantically conditioned image generation

Subject transfer between images is crucial for applications like film and art industries. For example, in

filmmaking, a stunt performer could be seamlessly replaced by the main actor, eliminating the need for

a look-alike and offering more freedom. The goal of subject transfer is for the source subject to replace

the target subject in the target image while preserving the background, object interactions, and spatial

configuration. Unlike faces or landscapes, human bodies are highly diverse and difficult to model.

Most methods address either pose transfer [365, 30, 323] or style transfer [380, 228], but they have

limitations: (1) they only work on simple backgrounds (PISE [365], SEAN [380],[323]), and (2) they are

expensive as they require intensive training [323] or onemodel per subject (Everybody Dance Now [30]).

Subject transfer, however, involves changing both pose and style/identity simultaneously.

The related semantic editing task controls a network’s output by using a segmentation mask. It can

be adapted for subject transfer by applying the target’s mask with the source’s style. However, modern

methods struggle with complex, real-world scenes. For instance, SPADE [228] fails at independent region

style control, while SEAN [380] cannot handle detailed scenes with multiple background objects.

To address these, we propose SCAM (Semantic Cross Attention Modulation), a semantic editing

model for subject transfer. SCAM captures fine details within semantic regions by using multiple latents

per semantic region, enabling better handling of coarse labels like backgrounds. It generatesmore com-

plex backgrounds and outperforms SEAN [380] in both subject transfer and semantic reconstruction.

Related work. I. Image to Image Synthesis with GANs. StyleGAN [140, 141] modulates the feature map at

each resolution using a style vector, improvingGANs. Pix2Pix [121, 324] introduces control through paired

data, but this is challenging to obtain. CycleGAN [379] circumvents the need for paired data by using

cycle consistency with unpaired data. In our case, paired data are unavailable, as creating ground-truth

images with identical pose and occlusion is infeasible. We address this by training on a reconstruction

proxy task and performing subject transfer at test time.

II. Semantic Image Generation. Pix2Pix [121, 324] uses segmentation masks but loses semantic detail.

SPADE [228] improves this with layer-wise semantic conditioning. CLADE [299] reduces SPADE’s com-

plexity. Other methods enhance SPADE [328, 174, 165, 269, 301, 299, 74, 98], but do not focus on image

re-generation for editing. SEAN [380] uses style vectors per semantic label, while GroupDNet [383] and

INADE [298] encode each semantic region separately, but struggle with coarse labels and single vec-

tors per region. Our SCAM approach introduces the SAT-Encoder for rich representations and multi-

ple latents per region, with pixel-wise modulation enabling unsupervised semantic structure. Diffusion

methods like [200] are also used for editing but are computationally expensive.

III. Attention. Transformers, despite their success [59, 242, 243, 27], have quadratic complexity. Vision

methods [69, 310, 177] mitigate this by using image patches, which lose information. Perceiver [124,

123] addresses this with cross attention, using fewer learned tokens. Attention has also advanced in

GANs [364, 75, 134, 372, 155, 362]. GANsformer [118] uses cross attention for style codes but focuses on

unconditional generation, not subject transfer. Our SCA module improves GANsformer’s attention for

semantically constrained generation.

IV. Pose Transfer. Keypoints for pose transfer [186, 382, 300, 161] result in coarse body representations.

Semantic masks [104, 67, 366, 365] improve this but focus on pose transfer, not subject transfer, and of-

ten do not preserve backgrounds. [30] overfit GANs to videos, unsuitable for dynamic scenes, while [323]

tie subjects to backgrounds. Our focus is on subject transfer, changing both pose and background.
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Figure 3.1: Training setup of SCAM. It consists of the SAT-Encoder (pink)

and the SCAM-Generator (yellow). The SAT-Encoder allows the latents to

retrieve information from an image, exploiting both the raw image and

the convolution feature maps. Once the image is encoded, the latents

are fed to the SCAM-Generator, which captures top-down and bottom-

up interactions with a semantic constraint, allowing to easily alter the

desired regions thanks to the latents that are dedicated to a given region.
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Figure 3.2: SCAM-Operation. It modu-

lates a feature map according to a seg-

mentation map, allowing each pixel to

retrieve information from a semanti-

cally restricted set of latents. It enables

both top-bottom (latents retrieve in-

formation from the feature map) and

bottom-top interactions (the map gets

information from latents).

Approach overview. Our goal is to perform semantic editing with a focus on subject transfer. We

propose the SCAMmethod (Semantic Cross Attention Modulation, Figure 3.1). It relies on three items.

First, SCA (Semantic Cross Attention), i.e. a novel mechanism that masks the attention according

to segmentation masks, thus encoding semantically meaningful latent variables. The goal of SCA is

two-fold depending on what is the query and what is the key. Either it allows to give the feature map

information from a semantically restricted set of latents or, respectively, it allows a set of latents to

retrieve information in a semantically restricted region of the feature map. It is defined as:

SCA(𝐼1, 𝐼2, 𝐼3) = 𝜎

(

𝑄𝐾𝑇 ⊙ 𝐼3 + 𝜏
(

1 − 𝐼3
)

√

𝑑𝑖𝑛

)

𝑉 , (3.1)

where 𝐼1, 𝐼2, 𝐼3 the inputs, with 𝐼1 attending 𝐼2, and 𝐼3 the mask that forces tokens from 𝐼1 to attend

only specific tokens from 𝐼21, 𝑄=𝑊𝑄𝐼1, 𝐾=𝑊𝐾𝐼2 and 𝑉 =𝑊𝑉 𝐼2 the queries, keys and values, and 𝑑𝑖𝑛
the internal attention dimension.

We use three types of SCA. (a) SCA with pixels𝑋 attending latents𝑍: SCA(𝑋,𝑍, 𝑆), where𝑊𝑄∈R𝑛×𝑑𝑖𝑛

and 𝑊𝐾 ,𝑊𝑉 ∈R𝑚×𝑑𝑖𝑛 . The idea is to force the pixels from a semantic region to attend latents that

are associated with the same label. (b) SCA with latents 𝑍 attending pixels 𝑋: SCA(𝑍,𝑋, 𝑆), where
𝑊𝑄∈R𝑚×𝑑𝑖𝑛 , 𝑊𝐾 ,𝑊𝑉 ∈R𝑛×𝑑𝑖𝑛 . The idea is to semantically mask attention values to enforce latents to

attend semantically corresponding pixels. (c) SCA with latents 𝑍 attending themselves: SCA(𝑍,𝑍,𝑀),
where𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ∈R𝑛×𝑑𝑖𝑛 . We denote𝑀 ∈ N𝑚×𝑚 this mask, with𝑀latents(𝑖, 𝑗)=1 if the semantic label

of latent 𝑖 is the same as the one of latent 𝑗; 0 otherwise. The idea is to let the latents only attend latents
that share the same semantic label.

Second, SCAM consists of SAT-Encoder (Semantic Attention Transformer) that relies on cross at-

tention to decide which information to gather in the image and for which latent. Third, SCAM consists

of the SCAM-Generator (Semantic Cross Attention Modulation) that captures rich semantic informa-

tion in an unsupervised way. It consists of a series of SCAM-Operation blocks, which aim at exchanging

information between pixels/features and latents of the same semantic label (see Figure 3.2).

Experiments. Metrics. We use PSNR, and swap FID (S-FID). S-FID is computed as the FID between the

test set and a set of subject transfer images computed on the test set.

Datasets. We use iDesigner [254], CelebAMask-HQ [153], and ADE20K [377].

1The attention values requiring masking are filled with −∞ before the softmax. (In practice 𝜏=− 109)
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Figure 3.3: Subject Transfer results on the test set of (top) iDesigner [254] and (bottom) CelebAMask-HQ[153].

Note the hard case in the first row, where only SCAM rotates the subject.

Quantitative results. At the time of publication, SCAM outperformed all previous state-of-the-art ap-

proaches for all metrics. These major boosts in PSNR (approx. 20 vs 10-14 for other methods on all

datasets) showed that our reconstructed images better preserve the details of the initial images, mean-

ing the representation power of SCAM is higher than that of other approaches. The difference is also

notable for S-FID (19.8 vs 22.8 for SEAN [380]), showing that ourmethod performs better subject transfer

on datasets with coarse semantic labels than other approaches.

Qualitative results. Figure 3.3 shows the subject, background images, and segmentation mask of the

pose, followed by subject transfer results from various approaches. The top row shows samples from

iDesigner, and the second row is from CelebAMask-HQ. Among all methods, SCAM best preserves all

components of subject transfer: subject appearance, background, and pose. In the challenging first

row, where the subject has a different pose from the reference, SCAM successfully rotates the subject,

unlike other methods. In the bottom row, SCAM recovers more details in the transferred image, such

as skin color and facial expression. Notably, it captures the bicolor hair, whereas SEAN, SEAN-CLADE,

and INADE show averaged hair color. Most approaches struggle with person generation; only SCAM

produces a coherent human with the background reference.

Discussion. We introduced SCAM that performs semantic editing and in particular subject transfer in

images. The architecture contributions of SCAM are: first, the semantic cross attention (SCA) mecha-

nism, performing attention between features and a set of latents under the constraint that they only

attend to semantically meaningful regions; second, the Semantic Attention Transformer Encoder (STA)

retrieving information based on a semantic attention mask; third, the Semantic Cross Attention Modu-

lation Generator (SCAM) performing semantic-based generation. SCAM set the new state of the art at

that time by leveraging multiple latents per semantic region and by providing a finer encoding of the

latent vectors both at encoding and decoding stages.

Impact. This work has several applications, such as image editing where one person can be swapped

for another. This can have a negative impact if usedwith bad intentions, for instance, it could bemisused

to create fake news. Even though today this is not vital as detection of deep fakes still remains feasible,

it will become more challenging as research advances; hence, regulation will be necessary to manage

these risks. The method could also benefit film production by allowing actors to be replaced, which is

useful if an actor is unavailable or to reduce costs by using superstars’ likenesses without their physical

presence. However, this may raise legal issues if people’s images are used without permission.

Environmental impact. We used 42.3 thousands GPUs hours on Nvidia V100-32g. We used the French

Jean Zay cluster, with 50-80g CO2 for each kWh produced. Our experiments used 80% of the GPUs max-

imum power of 250Wh, which amounts to 10.6 MWh of energy used for the whole project. Considering

only the CO2 for the production of the electricity used, this results in 528-846kg of CO2 emitted for this

project. Training a single SCAMmodel requires 50 GPUs hours, which amounts to 10kWh and 500-800 g

of CO2 emitted. As a comparison, the world average per capita CO2 emission is 4.7 ton/year.
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3.1.2 Coherence-Aware Diffusion

Conditional Diffusion models excel in image generation while affording greater user control over the

generation process by integrating additional information [264, 14]. This extra data enables the model to

guide the generated image towards a specific target, leading to improved various applications including

high-quality text-to-image generation [257], as well as other modalities such as depth or human body

pose [367]. Furthermore, the accessibility of open-sourcemodels like Stable Diffusion has democratized

diffusion, already causing significant shifts in various domains such as design, art, and marketing.

Training conditional diffusion models requires substantial volumes of paired data comprising the

target image and its corresponding condition. In text-to-image generation, this pairing involves an image

and a descriptive caption that characterizes both the content and the style of the image. Similarly, for

class conditional generation, the pair consists of an image and its corresponding class label. Besides

the technical challenges associated with acquiring extremely large quantities of paired data, ensuring

accurate alignment between image and text conditions is still an open research question, as attested

by the large amount of work in this [160, 361]. In practice, large web-scraped datasets, such as LAION-

5B [270] or CC12M [32], contain abundant noisy pairs due to their collecting process. To clean the pairs,

hence ensuring alignment of higher quality, the prevailing strategy filters out samples that fail to meet

an arbitrarily chosen criterion, often done through techniques like thresholding the CLIP-score [240,

234, 236]. This approach, however, has twomain drawbacks: first, it is challenging to adjust the criterion

accurately and more importantly, it discards many high-quality samples that could potentially enhance

generation quality irrespective of the condition. For instance, out of the 50B initially-collected text-image

pairs, only 10% were left in LAION-5B [270], thus discarding 90% of the samples, i.e. 45B images.

Instead of discarding the vast majority of training samples, in this work, we leverage them to learn

simultaneously conditional and unconditional distributions. Specifically, for each sample, we introduce

the coherence score, which measures how coherent the conditioning is with respect to the data, i.e. how

well the condition corresponds to its associated image. We incorporate this coherence score into the

training process by embedding it into a latent vector, which is subsequently merged with the condition.

We then condition the diffusionmodel on this coherence score in addition to the original condition. This

additional information enables the model to determine the extent to which the condition should influ-

ence the generation of a target image, as shown in Figure 3.4. By doing so, the model learns to discard

the low-coherence conditions and focus on the high-coherence ones. Consequently, our model can be-

have as either a conditional or an unconditional model. Low-coherence samples, lead to unconditional

sampling, while high-coherence samples lead to conditional samples. During inference, ourmethod has

the flexibility to take as input the coherence score, thereby allowing users to vary the impact of the con-

dition on the generation process. Building on this, we redesign the Classifier-Free-Guidance (CFG) [112]

to rely on coherence conditioning instead of dropping out the conditioning randomly.

Related work. I. Conditional generation. Previous attempts to condition generative models were fo-

cusedonGANs [93]. Recently, diffusionmodels havemade significant advances in image generation [284,

288, 289, 111]. Compared to GANs, they have better coverage over the data distribution, are easier to

train, and outperform them in terms of image quality [61]. Architecture-wise, diffusion models rely

mostly on modified versions of a U-Net [111, 288, 61]. Recent works have shown that other architec-

tures are possible [232, 113]. ControlNet [367] has shown that fine-tuning these models allows for very

fine-grained control over the output with various conditioning modalities.

II. Learningwith noisy conditioning has beenwidely explored in classification. For binary classification,[215]
study machine learning robustness with noisy labels, while[120] train a DNN with exclusively positive

labels and confidence scores. [18] introduced instance-dependent noise scored by confidence. The neg-

ative impact of noisy labels has been mitigated with changes in architecture [92, 43], in the loss [251], or

filtering noisy samples [102]. Recently, [139] propose conditioning an image captionermodel by the CLIP-

score to mitigate the impact of text misalignment. Instead, we focus on image synthesis, conditioning

the diffusion model with a coherence score.
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Figure 3.4: Motivation for Coherence-
aware diffusion.

Figure 3.5: Architecture of the proposed Text RIN Block used in

CAD.

Approach overview. We assume that for every datapoint (𝑋, 𝑦) we have an associated condition 𝑐,
the coherence score of 𝑦 where 𝑐 ∈ [0, 1]. Our goal is to incorporate label coherence into the diffusion
model to discard only the conditioning that contains low levels of coherence while continuing to train

on the image. A value of 𝑐=1 indicates that 𝑦 is the best possible annotation for 𝑋, while 𝑐=0 suggests
that 𝑦 is a poor annotation for𝑋. To achieve this, we modify the conditioning of the diffusion model 𝜖𝜃
to include both 𝑦 and 𝑐, using the following loss:

𝐿simple = E(𝑋,𝑦,𝑐)∼𝑝data,𝑡∼ [0,1][‖‖𝜖 − 𝜖𝜃(𝑋𝑡, 𝑦, 𝑐, 𝑡)‖‖] . (3.2)

We refer to this kind of models as coherence-aware diffusion (CAD) models. By informing the diffusion

model of the coherence score associatedwith samples, we avoid filtering out low-confident samples and

let themodel learn by itself what information to take into account. Avoiding the filtering allows us to still

learn 𝑋 even in the presence of noisy labels. In practice, to enable text-conditioned image generation,

we propose a modification to the RIN architecture, coined Text RIN Block (see Figure 3.5). First, the text

tokens are mapped with the coherence with 2x self-attention layers initialized with LayerScale [310] (top

part in the figure) and 16 registers [55]. This mapping is the same for every Text RIN block.

Test-time prompting. After training with different levels of coherence, we can also prompt it with

varying degrees of coherence. Prompting with minimal coherence leads to an unconditional model.

When we prompt with maximal coherence, we get a model that is very confident about the provided

label. To strengthen the use of the label, we propose a modification to the Classifier Free Guidance

(CFG) method [112] that leverages the coherence. CFG uses both a conditional and unconditional model

to improve the quality of generated samples. To learn such models, a conditional diffusion model is

used and the conditioning is dropped out for a portion of the training samples. The CFG formulation is:

𝜖𝜃(𝑥𝑡, 𝑦) = 𝜖𝜃(𝑥𝑡, 𝑦) +𝜔(𝜖𝜃(𝑥𝑡, 𝑦) − 𝜖𝜃(𝑥𝑡, ∅)) , (3.3)

with 𝜔 the guidance rate. Instead, we propose a coherence-aware version of CFG (CA-CFG):

𝜖𝜃(𝑥𝑡, 𝑦) = 𝜖𝜃(𝑥𝑡, 𝑦, 1) +𝜔(𝜖𝜃(𝑥𝑡, 𝑦, 1) − 𝜖𝜃(𝑥𝑡, 𝑦, 0)) . (3.4)

This modification removes the need to dropout the conditioning. Instead, we directly use the noise in

the conditioning to drive the guidance.

Experiments. For text-conditional image generation, we use a modified version of RIN [122]. To map

the text to an embedding space, we use a frozen FLAN-T5 XL [45]. We then map the embedding with 2

self-attention transformer layers initialized with LayerScale [311]. We finally add the conditioning to the

latent branch of RIN at each RIN Block with a cross-attention layer.

Datasets. We train CAD on a mix of datasets composed of CC12M [33] and LAION Aesthetics 6+ [270].
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Figure 3.6: Images generated with coher-
ence score between the prompt and the

target image. The score varies from 0

(no coherence) to 1 (maximum coherence).

Higher coherence scores tend to generate

images that adhere more to the prompt.

00.140.290.430.570.710.861
Coherence

23.0

23.5

24.0

24.5

25.0

25.5

26.0

CL
IP

Sc
or

e

CLIPScore

73

74

75

76

77

78

79

FI
D

FID

Figure 3.7: Increasing the co-

herence from 0 to 1, CLIP-

Score increases and FID de-
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Figure 3.8: FID vs CLIP score

for varying guidance 𝜔. CAD

achieves a better trade-off with

a much lower FID for the same

CLIP score.

Top prompt: “a raccoon wearing an astronaut suit. The racoon is looking out of the window at a starry night; unreal
engine, detailed, digital painting,cinematic,character design by pixar and hayao miyazaki, unreal 5, daz, hyperrealistic,
octane render”, bottom prompt: “An armchair in the shape of an avocado”

Metrics. We evaluate image quality with the Frechet Inception Distance [110] (FID), and CLIP Score [240]

and evaluate metrics on CLIP features on a 10K samples subset of COCO [171] in a zero-shot setting.

Quantitative results. Here, we explore the behavior of our proposed coherence-aware diffusionmodel

at test time. For the text conditional setting, Figure 3.7 shows that the coherence and the quality of

the generated image increase as the coherence increases. Indeed, FID decreases and the CLIPScore

increases. In Figure 3.8, we observe that our method achieves a significantly better FID/CLIP tradeoff

than the other methods. We corroborate these results with a user study, where we generate images for

randomly sampled captions in COCO with various methods and ask users to vote for the image with the

best quality, and for the one with the most coherence to the prompt. Users prefer the image quality of

our images in 95% of the cases and find our images better aligned with the prompts by 89%.

Qualitative results. Weprompt themodel with varying coherence scores from 0 to 1 and display results

in Figure 3.6. When the coherence increases, the outputs are close to the prompt. In the bottom figure,

the generated image displays an avocado armchair, where avocado and armchair are well mixed. Even

the raccoon generation at the top follows closely the complex textual prompt. The raccoon doeswear an

astronaut suit and is looking through thewindow at a starry night. Similarly, as the coherence decreases,

the images start to diverge from the original prompt. The avocado chair starts to first lose the “avocado”

traits until there is only a chair and at the end an object that does not look like an avocado or a chair. At

the top, we first lose the window, then the raccoon. Note that we do not converge to a totally random

image. Instead, some features from the prompt are preserved, such as the astronaut suit and the starry

night. This is highly linked to the CLIP network biases, which may pay less attention to less salient parts

of an image such as the background, and are more sensitive to the main subject.

Discussion. We proposed a novel method for training conditional diffusionmodels with additional co-

herence information. By incorporating coherence scores into the conditioning process, our approach

allows themodel to dynamically adjust its reliance on the conditioning. We also extend the classifier-free

guidance, enabling the derivation of conditional and unconditionalmodels without the need for dropout

during training. We have demonstrated that our method, called condition-aware diffusion (CAD), pro-

duces more diverse and realistic samples on various text-to-image generation tasks.

Impact and Limitations. The main limitation of CAD lies in the extraction of coherence scores, as

unreliable coherence scores can lead to biases. Future research includes focusing on more robust and

reliable methods for obtaining coherence scores to further improve the generalizability of CAD.
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3.1.3 Analysis of Classifier-Free Guidance Weight Schedulers

Diffusionmodels have shown strong generative capabilities across various domains: images [111], acous-

tic signals [138], videos [184]. Conditional generation with diffusion, such as text-conditioned image gen-

eration, is often achieved by adding an extra condition input [216] and has been explored in numerous

works [264, 260, 14]. Classifier Guidance [61] combines gradients from a separately trained classifier with

a diffusion model, while Classifier-Free Guidance (CFG) [112] uses a Bayesian implicit classifier to achieve

condition reliance without an external classifier. In both cases, a weighting parameter 𝜔 controls the

generative and guidance terms, applied at all timesteps. Varying 𝜔 is a trade-off between fidelity and

condition reliance. Recent works have explored dynamic guidance: MUSE [31] suggests a linearly in-

creasing guidance weight can enhance performance and diversity, an approach adopted in Stable Video

Diffusion [19] and discussed in [83] through a parameterized cosine-based curve (pcs4). However, these

studies lack empirical validation for dynamic guidance weight schedulers. For instance, MUSE [31] briefly

mentions linear guidance and pcs4 [83] is only discussed in the appendix.

This work bridges this gap by exploring the behaviour of diffusion guidance and systematically

examining the impact of dynamic schedulers on visual generation. We explore various heuristic and

parametrized dynamic schedulers across tasks and datasets.

Relatedwork. Recently, diffusionmodels have excelled in image synthesis [287, 111], text-to-image [61,

257, 236, 234], and text-to-motion [42]. Conditioned diffusion models use additional input for control,

with two main methods: Classifier Guidance (CG)[61] and Classifier-Free Guidance (CFG)[112]. CFG has

improved text-conditional generation significantly, employing text encoders like CLIP [238] for models

such as Stable Diffusion [257] and SDXL. For CG, [374] used entropy to rescale gradients, while [65]

employed multiple class conditions and [64] suggested gradient projection. In CFG, [158] developed a

zero-shot classifier, and [31, 83] proposed dynamic guidance schedulers. Instead, we extensively study

dynamic guidance for various tasks.

Approach overview. Following DDPM [111], diffusion consists in training a network 𝜖𝜃 to denoise a

noisy input to recover the original data at different noise levels. A common practice nowadays in con-

ditional diffusion is the Classifier-Free Guidance (CFG) [112], which is controlled by the guidance 𝜔, the
condition 𝑐 and is defined as:

𝜖𝜃(𝑥𝑡, 𝑐) = 𝜖𝜃(𝑥𝑡, 𝑐) +𝜔
(

𝜖𝜃(𝑥𝑡, 𝑐) − 𝜖𝜃(𝑥𝑡)
)

. (3.5)

We can reformulate the above equation into two terms: a generation term 𝜖𝜃(𝑥𝑡)∝∇𝑥𝑡 log 𝑝(𝑥𝑡) and
a guidance term∇𝑥𝑡 log 𝑝(𝑐|𝑥𝑡). The guidance term can be derived either from a pre-trained classifier or

an implicit one, with the guidance 𝜔 balancing between generation and guidance.

Dynamic guidance. We observe from [152] that removing the guidance at certain timesteps improves

the performance over using a static weight 𝜔 for CFG like in [112, 61]. Therefore, we ask the question

whether we can replace static guidancewith other options. To this end, we investigate dynamic guidance
scheduler that evolves throughout the generation process, also in line with some empirical schemes

mentioned in recent literature [19, 31, 66]. In that case, the CFG Equation 3.5 is rewritten as follows:

𝜖𝜃(𝑥𝑡, 𝑐) = 𝜖𝜃(𝑥𝑡, 𝑐)+𝜔(𝐭)
(

𝜖𝜃(𝑥𝑡, 𝑐) − 𝜖𝜃(𝑥𝑡)
)

. (3.6)

To identify an effective dynamic scheduler 𝜔(𝐭), we analyse two types of function in subsequent para-

graphs: parameter-free heuristic schedulers and single-parameter parameterized ones.

Dynamic Guidance: 1. Heuristic Schedulers. We use six simple heuristic schedulers as dynamic

guidance 𝜔(𝑡), split into three groups depending on the shape of their curve: (a) increasing functions
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Figure 3.9: Examples of all heuristics on SDXL. Increasing ones (linear and cosine) enhance fidelity, textual ad-
herence and diversity.

(linear, cosine); (b) decreasing functions (inverse linear, sine); (c) non-monotonic functions (linear V-

shape, linear Λ-shape), defined as:

linear: 𝜔(𝑡) = 1 − 𝑡∕𝑇 , invlinear: 𝜔(𝑡) = 𝑡∕𝑇 ,
cosine: 𝜔(𝑡) = cos (𝜋𝑡∕𝑇 ) + 1, sine: 𝜔(𝑡) = sin (𝜋𝑡∕𝑇 − 𝜋∕2) + 1,

V-shape: 𝜔(𝑡) = invlinear(𝑡) if 𝑡 < 𝑇 ∕2, Λ-shape: 𝜔(𝑡) = linear(𝑡) if 𝑡 < 𝑇 ∕2,
linear(𝑡) else, invlinear(𝑡) else.

To allow for a direct comparison between the effect of these schedulers and the static guidance 𝜔,
we normalize each scheduler by the area under the curve: ∫ 𝑇

0 𝜔(𝑡)𝑑𝑡 = 𝜔𝑇 .

Experiments with heuristic schedulers. Metrics. To assess the performance, we use the Frechet

InceptionDistance (FID) and Inception Score (IS)metrics, over 50, 000 inference from50-stepDDIM [287].

For text, we also use CLIP score (CS).

Class-conditional image generation. We study the 6 heuristic schedulers 𝜔(𝑡) on the CIFAR-10-DDPM
setting for class-conditional synthesis. In this experiment, we evaluate the effect of various guidance

weight on the image quality vs class adherence trade-off. The results show that both increasing sched-

ulers (linear and cosine) significantly improve over the static baseline, whereas decreasing schedulers

(invlinear and sine) are significantly worse than the static. The V-shape and Λ-shape schedulers perform

respectively better and worse than the static baseline, but only marginally.

Text-to-image generation. In FID, both the linear and cosine schedulers achieve better FID-CS than

the baseline [236]. In Diversity, linear is slightly lower than cosine, and they are both better than static

baseline. Additionally, unlike the baseline where higher guidance typically results in compromised FID,

heuristic schedulers counter this. Figure 3.9 depicts the text-to-image generations with all heuristic

schedulers from SDXL.
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Findings with heuristic schedulers. Combining with our initial observation that removing the be-

ginning stage improves the performance, they point to the same conclusion: monotonically increas-
ing guidance schedulers achieve improved performances, revealing that the static CFG primarily may

overshoot the guidance in the initial stages. In summary, we make the following observations: mono-

tonically increasing heuristic schedulers (e.g., linear and cosine) (a) improve generation performances

(IS/CS vs. FID) over static baseline on different models; (b) improve image fidelity (texture, details), di-

versity (composition, style) and quality (lighting, gestures). We note that this gain is achieved without

hyperparameter tuning, retraining or extra computational cost.

Dynamic Guidance: 2. Parametrized Schedulers. We also investigate two parameterized sched-

ulers with a tunable parameter to maximize performance: a power-cosine curve family (introduced in

MDT [83]) (pcs) and two clamping families (linear and cosine), with controllable parameter 𝑠 and 𝑐, re-
spectively. They are defined:

𝑤𝑡 =
1 − cos𝜋

(

𝑇−𝑡
𝑇

)𝑠

2
𝑤 (pcs) (3.7)

𝑤𝑡 = max(𝑐, 𝑤𝑡) (clamp) (3.8)

Experiments with parametrized schedulers. Text-to-image generation with the clamp-linear and

pcs schedulers. For SD1.5 [257], the pcs struggles to achieve low FID, except when 𝑠 = 1. Conversely,
the clamp family exhibits optimal performance around 𝑐=2. For SDXL [236], the pcs shows the best

performance at 𝑠 = 0.1. Clamp-linear achieves optimum at 𝑐 = 4 (FID 18.2), largely improving FID across

the entire CS range compared to the baseline (FID 24.9, about 30% gain) and the linear scheduler. The

optimal parameters of clamp-linear (resp. pcs) are not the same for both models, i.e. 𝑐=2 for SD1.5 and
𝑐=4 for SDXL (resp. 𝑠=1 and 𝑠=0.1 for pcs). This reveals the lack of generalizability of this family.

Findings with parametrized schedulers. Our observations are: (a) tuning the parametrized func-

tions improves the performance for both generation tasks, (b) tuning clamps seems easier than pcs

family, as its performance shows fewer variations, and (c) the optimal parameters for one method do

not generalize across different settings. Thus, specialized tuning is required for each model and task,

leading to extensive grid searches and increased computational load.

Discussion. We analyzed dynamic schedulers for the weight parameter in Classifier-Free Guidance by

systematically comparing heuristic and parameterized schedulers. We experiment on two tasks (class-

conditioned generation and text-to-image generation), several models (DDPM, SD1.5 and SDXL) and var-

ious datasets (more details in [326]). Our findings are: (1) a simple monotonically increasing scheduler

systematically improves the performance compared to a constant static guidance, at no extra computa-

tional cost and with no hyper-parameter search. (2) parameterized schedulers with tuned parameters

per task, model and dataset, improve the results. They, however, do not generalize well to other models

and datasets as there is no universal parameter that suits all tasks.

For practitioners who target state-of-the-art performances, we recommend searching or optimizing

for the best clamping parameter. For those notwilling tomanually tune parameters per case, we suggest

using heuristics, specifically linear or cosine.

Impact. By enhancing the efficiency and performance of generative models, our work contributes to

advancements in areas such as content creation, where AI-generated images andmedia are increasingly

used. This can democratize access to high-quality content production, enabling creators and industries

to produce innovative work at lower costs. Same as in Section 3.1.2, a notable concern is to the potential

misuse of AI for creating realistic deepfakes or misleading content or violating one’s privacy.
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3.2 Camera motion generation

Cinematography is a collaborative process mixing technical, artistic, and storytelling skills to convey a

distinct message through scene layout, lighting, and camera placement. The camera plays a critical

role in conveying the director’s intention, using a common language known as film grammar. However,

mastering camera placements and motions remains challenging, especially for novices. To ease this,

several methods have been proposed to compute camera trajectories, including geometric [20, 172],

optimization- and control-based [71, 82], and deep learning [131, 21, 115, 71] approaches. These either

use cinematic-rule-based control [115, 21, 82] or example-based imitation [131, 130, 325] but often require

designing specific geometric models or cost functions for each motion, limiting creative combinations.

Recent advances in video generation [329, 373] allow for more creative camera motion in generated

videos. [132] addressed camera trajectory generation using diffusionmodels with high controllability but

faced limitations due to a character-centric coordinate system and oversimplified evaluation metrics. In

other domains, generative techniques use large datasets with textual descriptions (such as language-

motion [235, 100]), but cinematography lacks such datasets with crucial cinematic information. Most

recent approaches use synthetic data [131, 130, 132] or general videos without cinematic features [115,

378]. Example-based approaches for cinematic transfer from real film clips[325, 133] offer limited control

and variability, without encoding cinematographic knowledge.

Here, we propose the E.T. the Exceptional Trajectories camera trajectory dataset from real movie clips

with camera and character trajectories and textual descriptions. We also introduce Director, a diffusion-

based model that generates camera trajectories using text descriptions and character information.

Related work. I. Camera control evolved from geometric and rule-based controls [20, 172, 71] to deep

learning. [131] introduced a Mixture-of-Experts model for 3D animations, with keyframing [130]. [325]

optimized trajectories using Neural Radiance Field [203]. Example-based methods struggle with gener-

alization due to the need for selected reference videos. In drone cinematography, cinematic-rule-based

methods use Deep Reinforcement Learning (DRL) and Imitation Learning (IL). [115, 21] used IL and DRL

for drone control, while [340] used aesthetic score-based RL. RL-based methods require environment-

specific training and limit trajectory diversity. We use diffusion models for better generalization.

II. Camera diffusion. Generative models, especially diffusion models, have advanced in image, video,

and motion generation [258, 236, 217, 283, 19, 308, 42, 368]. Diffusion models produce high-fidelity sam-

ples [339, 61], making them suitable for camera trajectory generation. The Cinematographic Camera

Diffusion (CCD) [132], based on MDM [308], uses synthetic data and a character-centric coordinate sys-

tem. Our E.T. dataset uses a global coordinate system with a rich vocabulary and extensive data.

III. Camera trajectory datasets. Large multimodal datasets are common in generative methods, like

LAION [271] for text-to-image generation and KIT and HumanML3D [235, 100] for humanmotion synthe-

sis. Few datasets exist for camera control [378, 132]. The RealEstate10K dataset [378] focuses on smooth

3D reconstruction movements, lacking cinematic complexity. Jiang et al.[132] introduced a synthetic

dataset that oversimplifies cinematic dynamics. SLAHMR [90] offers robust 3D human pose estimation,

motivating our E.T. dataset with enhanced captions for camera and character trajectories.

Proposed dataset. The key properties of E.T. are: Cinematic content. E.T. features realistic and

cinematic camera trajectories from real movies, unlike RealEstate10k’s [378] smooth trajectories and

CCD’s [132] synthetic data. Scale. Built on 16, 210 scenes from CMD [12], E.T. includes 115K samples,

11M frames, and 120 hours of footage. It surpasses KIT [235] and HumanMl3D [100] in scale and ex-

ceeds CCD [132] in hours, frames, and samples. Though comparable to RealEstate10k [378], E.T. adds

character trajectories and captions from real movies. Controllability. E.T. offers camera and charac-

ter trajectories with captions, providing semantic information and a user-friendly format. In contrast,

RealEstate lacks captions, and CCD’s limited captions focus only on camera data. E.T.’s rich captions

match the vocabulary size of human motion datasets like KIT and HumanML3D.
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Figure 3.10: E.T. creation. Given RGB frames, we first extract and pre-process camera and character poses, then

tag resulting camera and character trajectories (sequence of poses) to obtain rough descriptions (middle), which

we finally, we translate into rich textual captions, aligning the camera trajectory with that of the character (right).

Dataset #Samples #Frames #Hours Domain Character Camera #Vocabulary
Traj #Captions Traj #Captions

KIT Motion-Language [235] 4K 0.8M 11.23 Mocap ✓ 6K - 1,623

HumanML3D [100] 14K 2M 28.59 Mocap ✓ 45K - 5,371
RealEstate10k [378] 79K 11M 121 Youtube - ✓ - -

CCD [132] 25K 4.5M 50 Synthetic - ✓ 25K 48

E.T. (Ours) 115K 11M 120 Movie ✓ 115K ✓ 230K 1,790

Table 3.1: Dataset comparison. We compare the E.T. dataset to (i) two human motion datasets KIT [235] and

HumanML3D [100]; and (ii) camera trajectory datasets RealEstate10K [378] and CCD [132]. Here the notion of

sample is common across all datasets and corresponds to data associated with a continuous temporal sequence.

Dataset creation pipeline. E.T. is created through a three-step process (Figure 3.10). (1) We extract

and refine 3D coordinates of cameras and characters into uniform trajectories. (2) We perform motion
tagging by dividing each trajectory into segments that represent pure camera movements, which we

then label. (3) We generate captions describing both camera and character trajectories over time. We

use SLAHMR [352] for extracting camera and character poses, and apply pre-processing steps like align-

ment, filtering, smoothing, and cropping (up to 300 frames) as described in [100]. For camera trajectory
tagging, we utilize rigid body velocity∈ 𝑆𝐸(3) to distinguish between different cameramovements, such

as ‘trucking’ and ‘depth’. For character trajectory tagging, we assume characters face their movement di-

rection, identify the main character per shot following [314], and generate captions for both camera and

character trajectories. Lastly, inspired by [57], we use the LLMMistral-7B [129] to convert motion tagging

descriptions into detailed textual annotations.

Approach overview. We introduce the DiffusIon tRansformEr Camera TrajectORy (Director) method for

camera trajectory generation. Director takes as input the character trajectory with the camera-character

caption and generates a camera trajectory. Additionally, we present the Contrastive Language-Trajectory
embedding (CLaTR) that serves as a basis for creating a common space between text and trajectories, en-

abling the computation of evaluationmetrics. The base of Director is a pre-norm Transformer [315, 341].

We condition the transformer on the diffusion timestep, the character trajectory, and a textual descrip-

tion that describes the relative movement between the camera and character trajectories. Inspired by

the DiT architecture variants [233], we explore three distinct ways to include the conditioning in the de-

noising process: Director A adds the conditioning to the context of the transformer input; Director B
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Figure 3.11: Qualitative results. Generated camera trajectories with corresponding prompts and character tra-

jectories, highlighting (a) controllability, (b) diversity, (c) complexity, and (d) character awareness. Darker shades

indicate later frames.

concatenates the conditionings into a single token for an AdaLN operation; and Director C uses the full

sequence length of the conditioning with cross-attention.

Experiments. Metrics. We use two sets of metrics. For camera trajectory quality, we use the Frechet

CLaTr Distance (FDCLaTr), Precision (P), Recall (R), Density (D), and Coverage (C)[213]. For text-camera

coherence, we use the CLaTr-Score (CS)[109].

Datasets. We train and evaluate two subsets of the E.T. dataset: the pure camera trajectory subset and

the mixed camera trajectories subset. We compare Director with concurrent methods on both subsets.

Quantitative results. Director outperforms CCD [132] and MDM [308] on all metrics and both subsets.

It achieves amargin of−3.0 FDCLaTr againstMDMand−32.1 against CCD, and a substantial improvement

of +3.6 ClaTR-Score against MDM and +15.7 against CCD.
Ablation of Director Architectures. Director C outperforms other variants, followed by Director A.

Director B excels in text-camera coherence on the pure trajectory subset but struggles on the mixed

trajectory subset due to AdaLN’s limitations in capturing sequential complexity.

Qualitative results. Figure 3.11 shows generated camera trajectories fromDirector (architecture C), in-

cluding keyframes, character meshes, and captions. We highlight four key strengths: (1) Controllability.

Director allows precise control; modifying two words in the caption generates diverse camera move-

ments like trucks right” and booms bottom”. (2) Diversity. It produces varied camera trajectories from the

same input conditions, offering a range of creative outputs. (3) Complexity. Director handles complex

scenarios, including varied character movements and camera descriptions. (4) Character-awareness. It

generates camera movements that align with the character’s trajectory.

Discussion. We introduced E.T., a dataset of camera and character trajectories from movies, with

accompanying text captions. We demonstrated how E.T. enables training Director, a diffusion-based

method that sets a new state-of-the-art in camera trajectory generation. Future work will enhance cap-

tion expressiveness with more detail on modifiers and character positioning.

Impact. Creative Integrity: It is a fine line between using an AI tool to enhance human creativity and

allowing it to deprive the human creative process. Under misusage, the proposed method could dimin-

ish the artistic expression instead of supporting or complementing it. Intellectual Property: The use of
AI-generated content raises questions about ownership and copyright. The Intellectual Property own-

ership of the generated content can be debatable. Job Displacement or Creation: The automation of

certain aspects of filmmaking could lead to concerns about job displacement within the industry, or

under proper usage, may also help to create new types of jobs in the domain.
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Chapter 4

Multimodality in Medical Applications

Here, our goal is to propose novel, and generalizable computer vision methods for medical imaging,

with focus on forecasting issues in individuals by leveraging imaging and clinicobiological data.

In Section 4.1, we first describe our CosEmb [204, 205] masked-transformer-based model for fore-

casting organ transplant rejections through the serum creatinine prediction from follow-up exams of

MRI data post-transplantation. Then, inspired by LLMs, in [206] we extended CosEmb and introduced

the MEDIMP model that learns multi-modal representations of renal transplants by also incorporating

structural clinicobiological data after translating them into text prompts; being one of the first works on

medical imaging that exploited text prompting. Our code and models are available online at https:
//github.com/leomlck/renal_transplant_imaging and https://github.com/leomlck/MEDIMP.
This work has been published at MICCAI 2022 [204], MIDL 2022 [205] and MIDL 2023 [206].

Section 4.2 details our work for multimodal learning for detecting physiological changes under miss-

ing modalities. Multimodality has recently gained attention in the medical domain, where imaging or

video modalities may be integrated with biomedical signals or health records. Yet, two challenges re-

main: balancing the contributions of modalities, especially in cases with a limited amount of data avail-

able, and tackling missing modalities. To address both issues, in this work, we introduce ADAPT, a multi-

modal, scalable model with two key components: (i) aligning all modalities in the space of the strongest,

richest modality (called anchor) to learn a joint embedding space, and (ii) a Masked Multimodal Trans-

former, leveraging both inter- and intra-modality correlations while handling missing modalities. We

focus on detecting stress changes in individuals. Our code and models are available online: https:
//github.com/jumdc/ADAPT. This work has been published at MIDL 2024 [208] and CVPR-W 2024 [209].

4.1 Renal transplant failure prediction

Renal transplantation is more cost-effective than long-term dialysis and significantly improves quality of

life [294]. However, it carries a risk of chronic dysfunction that can lead to graft loss or patient death [105].

While blood tests and urine samples (e.g., serum creatinine) are primary indicators of kidney function,

irregular results often require needle biopsy, an invasive surgical operation. Thus, the need for a non-

invasive alternative is crucial. Medical imaging could play a crucial role in renal transplantation. Due

to the typically few and small annotated datasets, the community has turned to learning robust medi-

cal representations, typically involving two stages: first, applying self-supervised or weakly-supervised

methods [295, 150, 296] like contrastive or adversarial learning [291, 9, 24] to imaging datasets; second,

fine-tuning these representations for specific tasks. Pre-trained models often outperform those trained

on ImageNet but can still produce suboptimal results if they capture only spurious correlations [7].

Our work [204, 205, 206] addresses this by forecasting renal transplant function through serum cre-

atinine prediction. We propose self-supervised techniques [204, 205] for analyzing Dynamic Contrast-

Enhanced (DCE) MRI data post-transplantation and use contrastive learning with images and medical

prompts [206] to improve DCE MRI representations. Our methods CosEmb and MEDIMP handle miss-

ing data robustly and result to superior performance compared to other imputation strategies, marking

a significant advancement in forecasting serum creatinine from imaging and multimodal LLM data.

https://github.com/leomlck/renal_transplant_imaging
https://github.com/leomlck/renal_transplant_imaging
https://github.com/leomlck/MEDIMP
https://github.com/jumdc/ADAPT
https://github.com/jumdc/ADAPT
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Figure 4.1: Overview of the proposed CosEmb method. Different contrastive schemes are used to represent

the different MRIs. These features are used to train a sequential model coupled with a key mask tensor to mark

the missing data.

Related work. I. Renal transplant dysfunction. Recent methods focus on detecting specific conditions

like renal fibrosis [224] or acute rejection [146]. Studies, such as [279], utilizemulti-modal MRI and clinical

data to assess renal allograft status across various exams. Thesemethods aim to non-invasively retrieve

structural, functional, and molecular information to diagnose chronic kidney disease [5].

II. Missing data is a critical issue in clinical data curation, typically addressed by imputation methods.

Traditional approaches include statistical methods and discriminative models like structured predic-

tion [145]. Generative approaches, such as expectation-maximization algorithms [84] and Generative

Adversarial Imputation Nets (GAIN)[353], also performwell inmedical imaging [53, 336]. However, these

models often require large datasets [144], whichmay be limited in clinical settings. Recent advancements

with transformer-based attentionmechanisms showpromise for imputation in both structural [335] and

trajectory data [17, 89], including using attention masks in models like BERT [60]. Our work [204, 205] is

among the first to robustly handle high-dimensional missing data in long sequences.

III. Multimodal medical imaging. Advances in Natural Language Processing (NLP) have enhanced weakly-
supervised tasks in computer vision. Multiview contrastive learning [10] has been applied to jointly train

image and text encoders [370, 239, 128, 212]. For natural images, [239] used million image-text pairs to

achieve strong performances. Studies like[370] used chest X-rays and radiology descriptions, while [212]

extended this approach to tasks like semantic segmentation and object detection. These approaches

primarily focus on 2D images and the MIMIC-CXR dataset, which is labor-intensive to curate and mostly

contains information about imaging exams rather than comorbidities.

Approach overview. In this work, we propose three approaches.

I. Medical Contrastive Pre-training. In medical imaging, data is scarce and datasets are small; thus,

meaningful pre-trainings are essential. To this end, in [205], we first propose a self-supervised scheme,

where we learnmeaningful features by solving the proxy task of determining if twoMRI volumes belong

to the same patient. For this, we create a two-stream model, with each ResNet-based stream taking as

input MRI volumes and outputting features; then, a feature embedding head associates these features

with the proxy task. From the embedded features (𝑧′1, 𝑧
′
2), the optimization by the loss:

CosEmbLoss(𝑧′1, 𝑧
′
2, 𝑦) =

{

1 − cos(𝑧′1, 𝑧
′
2), if 𝑦 = 1,

max(0, cos(𝑧′1, 𝑧
′
2), if 𝑦 = 0 ,

(4.1)
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Figure 4.2: Overviewof our proposedmethodMEDIMP –Medical Images and Prompts. 1. Medical prompts are

generated from clinicobiological data using predefined templates of sentences, given as inputs to Large Language

Models to produce augmented text data. 2. The medical prompts are used to learn multi-modal representations

of renal transplants DCE MRI using contrastive learning from image-text pairs.

where 𝑐𝑜𝑠 refers to the cosine similarity and 𝑧′1, 𝑧
′
2 refer to the features from each stream in the embed-

ding head. This loss enforces the model to build relevant features that express adequately the kidney

transplant imaging and define the way to create strategies to label 𝑦 each pair.
II. Model for Renal failure prediction with missing data. We propose the CosEmb model for renal

transplant failure prediction that handlesmissing data (Figure 4.1). Following the transformermodel [315],

CosEmb takes as input features corresponding to the different follow-ups (patient exams), and through

multi-head attention and normalization layers performs the classification by using the CLS token output.

To deal with missing data, we propose to build a key mask tensor 𝑚𝑘 ∈ R𝑇 based on the availability

of exams for each patient so that zero attention is given to missing data both during the training and

inference times, i.e. ∀𝑡 ∈ [[1, 𝑇 ]] 𝑚𝑘[𝑡] = −∞ if exam 𝑡 is available else 0. Thus, our mask cancels the

attention on missing exams by Attention(𝑄,𝐾, 𝑉 ) = softmax( (𝑄𝐾 𝑡)
√

𝑑𝑘
+𝑀𝑘)𝑉 where query𝑄, key𝐾 and

value 𝑉 and𝑀𝑘 = [[𝑚𝑘𝑚𝑘...𝑚𝑘]] ∈ R𝑇×𝑑𝑘 .

III. Multimodal model for Renal failure prediction. In this work [206], we exploit image-text pairing

with contrastive learning, as well as the encoding capabilities of recent advances in LLMs [28, 222, 239].

For this, we propose a framework that generates textual data from structural clinicobiological data that

describe variables used in clinical practice and linked to the graft survival. Then, we use these textual

data together with existing medical imaging features in a contrastive manner for prediction.

Specifically, we propose the Medical Image with Prompts (MEDIMP) method, which consists of two

components. First, we construct medical prompts from structural clinical and biological data as follows

(left side of Figure 4.2): (a) based on guidance frommedical experts, we create several template sentences
per variable of interest, e.g., “the GFR of the patient is very low at the first-year follow-up exam” or “The

transplant patient’s GFR is assessed as very low at the date follow-up examination.”. For this, we produce

𝑁 = 10 textual data augmentations for each template sentence with the dialogue ChatGPT [222]. This

textual augmentation offers richness and variation in descriptions, aiding the training. Second, following

a CLIP-like scheme, we pre-train an image (with 3D MRI volumes) and a text encoder (with tokenized

text). Specifically, we follow [41] and deploy the InfoNCE loss [220] that maximizes a lower bound on the

mutual information between the two modalities (right part of Figure 4.2).

Experiments. Metrics. For evaluation we use F1 score and ROC AUC.
Datasets. Approved by the Institutional Review Board, we experimented on a dataset with 105 subjects,
where each subject underwent up to 4 follow-up exams.

Quantitative results. By comparing CosEmb and MEDIMP with the same level of information, we ob-

serve that CosEmb outperforms MEDIMP by 1% F1 when the text information is not very rich due to
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its smaller and more compact size. However, when more variables are integrated, MEDIMP prevails

reaching 87.8% F1 vs 78.1% for CosEmb. Overall, MEDIMP with all medical prompts results in the best

predictions at 2 (85.0% AUC) and 4 (75.7% AUC) years post-transplantation.

Discussion. We introduced three methods aiming at transplant function forecasting in the context of

renal transplantation monitoring. First, we examined the significance of contrastive learning schemes

by proposing two self and weakly supervised pre-training schemes tailored to medical imaging. Second,

we proposed a CosEmb, a transformer encoder architecture with a custom method to handle missing

data. Third, we proposed MEDIMP, where we extended CosEmb by including clinical or biological in-

formation in the learning process. For this, we leveraged recent advances in LLMs and translated, in a

structured and systematic way, clinicobiological information into text. We then trainedMEDIMPwith text

and imaging pairs in a CLIP-like manner. ThOur experiments showed improved representation learning

for renal transplant MRI compared to previous state-of-the-art methods, particularly in forecasting re-

nal transplant function. MEDIMP enhances representations by leveraging LLMs and integrating clinical

and biological data, potentially advancing the understanding of complex medical phenomena. These

promising results advocate using textual data from LLMs to assist in training robust medical models.

Impact and Limitations. Despite our state-of-the-art results, several limitations remain. First, while

data scarcity is a challenge, additional test data would validate the generalizability of our methods. Cur-

rently, no public medical imaging dataset offers comprehensive longitudinal imaging and clinical data

for prognosis. Still, our framework could be adapted to similar datasets. Second, this work is an initial

effort to generate medical prompts from limited clinical and biological variables, essential for complex

medical concepts. We plan to expand this by incorporatingmore variables to guide image encoder train-

ing, which can be done by defining additional templates for automatic text generation. Third, despite the

remarkable results of LLMs, their reliability is a major concern, particularly with potentially inaccurate

outputs. In this work, we used ChatGPT for robust text augmentations without leaking sensitive clini-

cal information. Further exploration of LLMs, including specialized prompt engineering, could enhance

their utility in medical contexts.

4.2 Multimodal learning for detecting physiological changes undermiss-
ing modalities

Monitoring physiological changes to external stimuli is crucial for assessing individuals’ well-being, par-

ticularly in contexts with medical and safety implications. Examples include stress, a response to emo-

tional, mental, and physical challenges [267], and a triggering or aggravating factor for various patho-

logical conditions [63]. High-performance environments, such as exposure to 𝑔-forces in aircraft, can

lead to alterations in consciousness [211]. At the same time, drowsiness during driving poses a critical

physiological response with safety implications, contributing to road accidents and fatalities [293]. Vari-

ous sensors report physiological changes that may be detected visually (videos), acoustically (audio), or

from biomedical signals (e.g., electrocardiograms). However, specific modalities may be missing during

training and testing. Therefore, developingmethods capable of handlingmissingmodalities during both

stages while balancing modalities’ contributions is crucial to ensure robustness, notably when modali-

ties with strong unimodal performances are severely missing.

Various methods address the challenge of missing modalities, each with notable limitations, includ-

ing (1) bias towards the most available modalities leading to sub-optimal performance [148], (2) depen-

dence on complete modalities during training [191, 36] (3) limited generalizability to more than two

modalities [188, 187], and (4) utilization of a shared encoder tailored for modalities with inputs of the

same dimensions which complicates extension to heterogeneous modalities like imaging and biomed-

ical signals [148]. To address the above issues, we introduce the AnchoreD multimodAl Physiological
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Figure 4.3: Overview of ADAPT. In each minibatch, ADAPT takes up to 𝑀 modalities, including video, audio,

and biosignals, as input to produce a modality-agnostic representation for downstream tasks. It is trained in

two steps. (i) Anchoring. We align the representations of all modalities via contrastive learning to the one of an

anchor modality, i.e., the strongest and richest modality; here the video. (ii) Fusion. The encoders’ features are
concatenated and fed into the Masked Multimodal Transformer. When a modality is unavailable, the transformer

masks its corresponding feature representations. The final [CLS] token is used for downstream tasks.

Transformer (ADAPT) that is designed to operate effectively under missing modalities both during train-

ing and inference enabling robust real-life applicability [208, 209].

Related work. I. Handling missing modalities. Missing modalities pose a persistent challenge in Mul-

timodal Learning, particularly in medical imaging, due to privacy concerns or impractical data acqui-

sition [166, 8]. Various strategies have been explored to address this challenge. Knowledge Distillation
[114, 191, 320] involves learning from a teacher network trained on complete modality data. Generative
modeling aims to imputemissing inputs by generating synthetic data [354, 274]. Both approaches rely on

complete modality at training, which can be insufficient for robust training. Another line of work is com-
mon spacemodeling, which learns a shared latent space from partially availablemodalities [188, 148, 319].

SMIL [188] perturbs the latent feature space to approximate the embedding of missing modalities but is

limited to bi-modal datasets, limiting its generalizability. ShaSpec [319] addressesmore than twomodal-

ities by learning shared and specific features, but its use of a shared encoder complicates generalization

to heterogeneous modalities of different dimensions. Additionally, shared latent space modeling may

introduce biases toward the most available modalities [148]. Simultaneously, cross-modal contrastive

learning has shown impressive results [371, 206, 159] by aligning multimodal data in a joint embedding

space. Recently, ImageBind [88] aligned six modalities by relying on image-paired data and emphasized

that aligning all pair combinations is unnecessary to bind more than two modalities together. Our pro-

posed ADAPT advances this by training unimodal encoders solely with supervision from one modality,

aligning them in a joint embedding space. It ensures that every modality contributes to the final repre-

sentation, even if it is severely missing during training.

II. Multimodal transformer. Transformers [315] are the de facto approach for multimodal tasks [247, 292].

They rely on the attention mechanism to model long-range dependencies with the flexibility to account

for incomplete samples. [205, 187] efficiently handle missing data in sequences and bimodal datasets

through masked attention. ADAPT extends this to more than two modalities by leveraging attention to

fuse them and exploring their inter- and intra-modal correlations while masking missing ones. We also

perform a systematic study ofmissingmodalities during training and testing, showing the versatility and

potential of ADAPT for real-life scenarios.
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Approach Overview. ADAPT consists of two key components and is illustrated in Figure 4.3. First, our

goal is to embed all modalities in the same feature space. Instead of optimizing one loss per modal-

ity pair, which would result in quadratic growth of training time, we align each modality to one frozen

modality, called anchor. It allows learning a joint embedding space with linear scalability and balanc-

ing each modality’s contribution. We call this step the ‘anchoring’. In this work, anchor is the video,

as it can capture visually distinguishable physiological changes; however, any modality can be the an-

chor. Second, it comprises a Masked Multimodal Transformer that leverages inter- and intra-modality

correlations to concatenate features from different modalities into a unified representation. Addition-

ally, inspired by our previous work [205], we leverage the masked attention of transformers [315] to

ensure flexibility in handling missing modalities similar to [187, 205]. When a modality is unavailable,

its corresponding feature representation is masked. Furthermore, drawing inspiration from [280], we

mitigate the model’s over-reliance on a single modality while enhancing its robustness in the absence

of modalities through an augmentation technique called modality dropout. We leverage the masking

scheme at the attention level to randomly mask out input modalities. The transformer is trained using

two objectives: self-supervised learning and the objective of the downstream task.

Experiments. Metrics. We use the Accuracy and weighted F1 score (F1).

Datasets. We use StressID [34] for stress identification, which contains physiological responses via

electrocardiogram, electrodermal activity, respiration, audio, and videos. We use the train, val, and test

splits from [34]. StressID has 18% and 46% of missing video and audio recordings, respectively.

Quantitative results. For StressID, we observe that ADAPT outperforms all methods from [34] by a

notable margin, reaching F1 of 75.9% and Acc of 69.5%, while remaining highly competitive with ‘feature

fusion’ and ‘decision-level fusion’ (rows 4 & 5)[34] (66.0% and 72.0% F1) and ShaSpec+ [319] (75.7% F1).

Robustness to missing modalities. We examine the performance of various methods when removing

various modalities. When we remove audio and/or video, the most cumbersome modalities to acquire,

and examine the performances: Acc: no-audio 68.3%, no-video 61.2% and real-life (i.e., no audio, no video)
60.0% vs 69.5%whenusing allmodalities. We observe that even by removingmodalities, ADAPT success-

fully detects stress with more than 60% Accuracy, highlighting its ability to handle missing modalities, in

contrast to all other methods unable to address this.

Discussion. In this work [208, 209], we proposed ADAPT, a modality-agnostic representation frame-

work designed to operate effectively under missing modalities during both training and testing. Our

framework has been challenged on two different tasks targeting the detection of physiological changes,

outperforming the current state of the art while showcasing its superiority for handling missing modal-

ities. Our analysis highlights the robustness of our method in different scenarios and strategies. Future

work includes applications to other medical tasks.

Impact. Using computer vision inmedical imaging can have a positive societal impact. Accurate and re-

liable analysis is a valuable source inmedical imaging, for automatically analyzingmedical data [204, 205]

to identify abnormalities or to automatically generate reports from visual data that can assist medical

professionals. Specifically, the technology we develop could potentially contribute to: (a) Improved di-

agnosis and treatment of diseases: By using computer vision techniques to analyze medical images,

doctors and other healthcare providers could potentially identify diseases and other medical conditions

more accurately and quickly [208, 209]. This could lead to earlier and more effective treatment of dis-

eases, which could improve patient outcomes and save lives; (b) Improved patient experience withmore

personalized and tailored care by using interpretable techniques [99], thus leading to a better experi-

ence for patients; and (c) Improving rare medical issues: Modern AI techniques require big data, which

is unrealistic when it comes to medical imaging due to patients privacy and rarity of diseases. For this,

the techniques she developed require no or few data for prediction and instead exploit the underlying

structure of medical imaging for compact and informative representations [204, 205].
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Chapter 5

Discussion

5.1 Perspectives

This thesis has touched upon several problems inmultimodal visual content recognition and generation

from the story perspective. The unifying theme of the work is to address the complexity of multimodal-

ity in settings where story or other artistic elements are crucial split into two directions: understanding

scenes in videos (in our case edited videos, mostly movies) and conditional generation of visual con-

tent (mostly text-to-image generation). The research area of the latter is in its infancy, and our work

contributes to its first steps rather than to a final solution. Our contributions are summarized below.

Chapter 2 explores multimodality for cinematic stories in edited videos both for humans and for

scenes. For this, we first presented methods for identifying the interaction of mutual gaze between

people [194] together with identifying underlying social relationships based on people’s gazing [195]

(65 citations). Then, our work and dataset on person-clustering in videos [137, 26] (45 citations) based
on multiple modalities (face, body, voice) showed the importance of multiple modalities for person-

level reasoning for downstream applications such as story understanding. Next, we discussed scene

understanding, where the focus lied on comprehending the overall context and content of a scene.

Specifically, we focused on multimodality for cinematography by learning funny moments in videos

[178, 179] (15 citations) and by proposing a dataset for story-level question answering [86]. This body

of work highlights the power of leveraging multiple modalities in videos, demonstrating the enhanced

interpretative capacity for story-level reasoning across a range of applications.

Chapter 3 explores how to generate visual content by exploring multiple modalities as conditions,

such as text-to-image generation. In [73] (15 citations) we explored semantically-conditioned image gen-

eration, where we showed that having multiple latents per semantic region improves fine image details

and handling coarse semantic labels such as the background. Then, we explored conditional image

generation with diffusion (including text-to-image generation) with methods and insights that lead to

more diverse and realistic samples: by incorporating coherence scores into the conditioning, the diffu-

sion model can dynamically adjust its reliance on the conditioning [72] and by exploring various weight

schedulers we showed the best practices for improved performances [326]. Finally, we showcased the

importance of text-camera trajectory pairs for cinematography [50]. This body of work highlights how

multimodality can improve the performance and the creative potential of visual content generation,

from detailed image generation to dynamic camera movement in cinematic storytelling.

Chapter 4 refers to a real-life application of multiple modalities in the medical domain, in particular

for medical forecasting. Here, we explored two directions: first, how to combine imaging modalities

with clinicobiological signals and second, how to make robust and reliable predictions, in such a critical

domain as medical data, when data are scarce and when modalities are not always matched or paired

(missing modalities). For the former, our work on renal transplant failure prediction [206] (2 citations)
showed that translating clinical data to text can help the integration with visual data and our work on

detecting physiological changes [208, 209] showed the importance of modality alignment for such in-

tegration. For the latter, our work identifying physiological changes under missing modalities in the

low data regime [204, 205, 208, 209] (5 citations) showed that transformer masking is the most suitable

methodology.
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5.2 Future work

The work presented in this thesis attempts to bridge the gap between story-level understanding meth-

ods and visual content generation. But, now... Sora [176] is here! So, what’s next?

Audio-to-Video Generation. One of the major advancements in generative models is the generation

of video from audio. Currently, most approaches convert speech to text before generating videos, but

this intermediate step may limit the expressive potential. A promising direction is generating video

directly from speech, bypassing the text modality. This approach would allow models to incorporate

essential speech elements, such as tone, pitch, emotion, and rhythm, which are critical for conveying

narrative and mood. By moving beyond text, such systems could more accurately reflect the nuances

of spoken dialogue, offering richer and more authentic audiovisual experiences.

Fundamental Research in Multimodality. The challenge of multimodal alignment remains an open

problem. Text is often used as the central modality for aligning other forms of data such as images,

video, and audio; yet, this reliance on text may not be optimal [88]. Future research should explore

whether bypassing traditional modalities, such as text, could enhancemultimodal alignment. This could

involve developing an entirely artificial alignment mechanism not tied to a single existing modality, en-

abling more fluid and efficient cross-modal generation. Such research would enhance the capabilities

of generative models and pave the way for more intuitive interaction between humans and AI.

Memorability of Stories: Emotion, Place, andNarrative. Memorability is a key factor in storytelling,

particularly in visual media such as film. Three elements—emotion, setting (place), and narrative—have

been shown to be fundamental to making stories memorable [22]. Investigating how these elements

manifest in existing media, such as short films, can provide insights into their influence on audience

retention and emotional engagement. A structured analysis of how variations in these factors impact

memorability could help inform future models that generate content optimized for long-term viewer

impact, tailoring narratives to evoke stronger emotional and cognitive responses.

Incorporating Memorability in Visual Content Generation. Building upon the understanding of

story, emotion, and place, future research should explore how these elements can be directly integrated

into conditional image and video generation. Current generative models often focus on visual coher-

ence and aesthetics, but incorporating memorability as a core element could transform how content is

produced. By embedding narrative depth, emotional tone, and contextual significance into generated

visuals, models could create content that is not only visually compelling but also emotionally resonant

and cognitively engaging, driving new applications in film, advertising, and beyond.
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